首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
V. R. Smith 《Polar Biology》1987,8(2):135-153
Summary Studies of plant standing crop and nutrient concentrations have enabled an assessment of the seasonal changes in nutrient standing stocks (the mass of nutrients per m2) in two mire-grasslands at Marion Island (46°54S, 37°45E). Mire-grasslands are an important component of the island's vegetation, occurring on very wet peats and dominated by graminoids and bryophytes. Peak aboveground standing stocks of N, P and K in the vascular plant species of the mire-grasslands mostly occurred earlier in the season than did peak aboveground biomass, implying that aboveground accumulation rates of these nutrients were greater than the rate of biomass accumulation. Maximum Ca standing stocks coincided in the season with peak shoot biomass. Depending on the plant species, peak Mg and Na standing stocks occurred either before, or later than, peak shoot biomass. Total (above-plus belowground) standing stocks of nutrients (N+P+K+Ca+Mg+Na) at the time of peak aboveground biomass were 51 g m-2 at study mire 1 and 44 g m-2 at study mire 2. The most abundant element in the vegetation was N, followed by K. The net quantities of most nutrients translocated into the aboveground growth were mostly greater than the seasonal mean standing stocks in the aerial biomass. Except for Ca, nutrient standing stocks in the vegetation of the mire-grasslands are in the upper part of the range reported for sub-Arctic and Arctic graminoid communities. They are more similar to standing stocks at oceanic moorlands, montane grasslands and heath communities. Low Ca concentrations occur in the plants so that Ca standing stocks are lower than in most comparable northern hemisphere communities. Pool sizes (i.e. total quantities contained in the plant/soil system to a depth of 25 cm) of N, P, K and Ca are in the lower part of the range reported for wet, graminoid-dominated tundra and tundra-like communities of the northern hemisphere.  相似文献   

2.
Cycling of six mineral elements (N, P, K, Na, Ca and Mg) was studied in a humid subtropical grassland at Cherrapunji, north-eastern India during 1988-1989. Elemental concentrations in the shoot of four dominant grass species,viz., Arundinella khaseana, Chrysopogon gryllus, Eragrostiella leioptera andEulalia trispicata were very low, and none of the species appears suitable for fodder use. Among different vegetation compartments, live root was the largest reservoir of all the nutrients (except Ca) followed by live shoot, dead shoot, litter and dead root. For Ca, live shoot was the major storage compartment. The total annual uptake (kg ha-1) was 137.3, 10.4, 51.1, 5.5, 8.7 and 18.2 for N, P, K, Na, Ca and Mg, respectively. In an annual cycle 98% N, 77% P, 49% K, 109% Na, 87% Ca and 65% Mg returned to the soil through litter and belowground detritus. A major portion of N, P and Na was recycled through the belowground system, whereas nearly half of K, Ca and Mg was recycled through the shoot system. Precipitation acts as the source of N and P input, but at the same time causes loss of cations.  相似文献   

3.
This research studied the use of constructed wetlands (CWs) to reduce water salinity. For this purpose, three halophytic species of the Chenopodiaceae family (Salicornia europaea, Salsola crassa, and Bienertia cycloptera) that are resistant to saline conditions were planted in the CWs, and experiments were conducted at three different salinity levels [electrical conductivity (EC)~2, 6, 10 dS/m]. EC and concentrations of calcium (Ca), magnesium (Mg), sodium (Na), and chlorine (Cl) were measured before and after phytoremediation with a retention time of 1 week. The results suggested that these plants were able to grow well and complete their life cycles at all the salinity levels within this study. Moreover, these plants reduced the measured parameters to acceptable levels. Therefore, these plants can be considered good options for salt phytoremediation.  相似文献   

4.
Jan Vymazal 《Hydrobiologia》2011,674(1):133-156
The presence of macrophytes is one of the most conspicuous features of wetlands and their presence distinguishes constructed wetlands from unplanted soil filters or lagoons. The macrophytes growing in constructed wetlands have several properties in relation to the treatment process that make them an essential component of the design. However, only several roles of macrophytes apply to constructed wetlands with horizontal subsurface flow (HF CWs). The plants used in HF CWs designed for wastewater treatment should therefore: (1) be tolerant of high organic and nutrient loadings, (2) have rich belowground organs (i.e. roots and rhizomes) in order to provide substrate for attached bacteria and oxygenation (even very limited) of areas adjacent to roots and rhizomes and (3) have high aboveground biomass for winter insulation in cold and temperate regions and for nutrient removal via harvesting. The comparison of treatment efficiency of vegetated HF CWs and unplanted filters is not unanimous but most studies have shown that systems with plants achieve higher treatment efficiency. The vegetation has mostly a positive effect, i.e. supports higher treatment efficiency, for organics and nutrients like nitrogen and phosphorus. By far the most frequently used plant around the globe is Phragmites australis (Common reed). Species of the genera Typha (latifolia, angustifolia, domingensis, orientalis and glauca) and Scirpus (e.g. lacustris, validus, californicus and acutus) spp. are other commonly used species. In many countries, and especially in the tropics and subtropics, local plants including ornamental species are used for HF CWs.  相似文献   

5.
Biomass of Phragmites australis growing in four constructed wetlands with horizontal sub-surface flow (HF CWs) designed for treatment of municipal sewage in the Czech Republic have been analyzed for 19 trace elements. The biomass was harvested during the peak standing crop in early September and divided into stems, leaves, flowers, roots and rhizomes. Concentrations of monitored elements in both aboveground and belowground plant tissues were similar to those found in plants growing in natural stands. The highest concentrations were recorded for Al, Fe, Mn, Ba and Zn while the lowest concentrations were those of Hg, U and Cd. Concentrations decreased in the order of roots > rhizomes > leaves > stems. The root/leaf ratio averaged 70 and varied between 1.4 for molybdenum and 392 for cobalt. The belowground/aboveground concentration ratio ranged between 0.9 and 69.5 with an average value of 19. Due to average aboveground/belowground biomass ratio > 1, the belowground/aboveground standing stock ratios were lower with six elements (Ba, Zn, Se, Hg, Mo, and Mn) having this ratio < 1.  相似文献   

6.
To improve the removal efficiency of subsurface wetlands vegetated mainly by Phragmites, pilot‐scale gravel‐based wetlands were used to treat sewage characterized by chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) pollution. For Phragmites vegetation, COD, TP and TN removal loads of wetland vegetation with Phragmites australisTypha angustataScirpus validus as main species reached 0.517 g m?2 d?1, 0.277 g P m?2 d?1 and 0.023 g N m?2 d?1. The COD removal loads in pilot‐scale and medium‐scale (260 m2 in area) wetlands with Phragmites‐monoculture vegetation were 0.62–0.64 g m?2 d?1, while that of P. australis–T. angustata–S. validus wetland reached 0.974 g m?2 d?1. Thus, the preferable poly‐culture model for Phragmites wetland vegetation was P. australis, T. angustata, S. validus and Zizania latifolia with stem density ratio of 8:1:5:1. After harvest, nitrogen and phosphorus standing stocks of wetland vegetations ranged only 2.2–9.93 g N m?2 and 5.39–13.5 g P m?2, respectively, as both the above ground biomass and the nitrogen and phosphorus contents of the wetland vegetation harvested in late autumn were low.  相似文献   

7.
The first full-scale constructed wetland (CW) in the Czech Republic was built in 1989 and there are now three tertiary systems and 50 secondary treatment facilities. We report here on the design and operational efficiencies of these facilities. All CWs have been designed with horizontal subsurface flow. Coarse sand, gravel and crushed stones with size fraction of 4–16 mm are commonly used as substrates. The area of vegetated beds ranges between 18 and 4500 m2 and operational CWs are designed for population equivalent (PE) of 4 to 1,100. Common reed (Phragmites australis) is the most frequently used macrophyte species.Results from systems studied during 1994 and 1995 show that the effluent concentrations of organics and suspended solids (SS) are well below the required discharge limits. In most cases the final effluent BOD5 concentration is <10 mg l–1. The relationship between vegetated bed BOD5 inflow loadings (L 0) and outflow loadings (L) is very strong (r=0.92). Constructed wetlands with subsurface horizontal flow usually do not remove larger amounts of nitrogen and phosphorus. The results from five Czech constructed wetlands show that nitrogen removal varies among systems, but the amount of removed nitrogen is very predictable. A regression equation between nitrogen inflow loading (L 0) and outflow loading (L) produces a strong correlation (r=0.98). The most important process responsible for phosphorus removal in wetlands is precipitation with soil Ca, Fe and Al. However, the subsurface horizontal flow constructed wetlands use mostly coarse gravel and/or sandy materials and this provides little or no P precipitation. Results from monitored systems in the Czech Republic show that the percentage phosphorus removal varies widely among systems and is lower than the percentage removal of organics and suspended solids.  相似文献   

8.
亚热带不同植被恢复阶段林地凋落物层现存量和养分特征   总被引:1,自引:0,他引:1  
为揭示亚热带森林植被自然恢复过程中,凋落物层现存量及其养分元素储存能力的演变,采用空间代替时间的方法,在位于亚热带丘陵区的长沙县选取地域相邻、生境条件基本一致的檵木+南烛+杜鹃灌草丛(Loropetalum chinense+Vaccinium bracteatum +Rhododendron simsii scrub-grass-land,LVR)、檵木+杉木+白栎灌木林(L.chinense+Cunninghamia lanceolata+Quercus fabri shrubbery,LCQ)、马尾松+柯+檵木针阔混交林(Pinus massoniana +Lithocarpus glaber +L.chinense coniferous-broad leaved mixed forest,PLL)、柯+红淡比+青冈常绿阔叶林(L.glaber+Cleyera japonica+Cyclobalanopsis glauca evergreen broad-leaved forest,LAG)作为一个恢复序列,设置固定样地,采集未分解层(U层)、半分解层(S层)、已分解层(D层)凋落物样品,测定凋落物层现存量和主要养分元素含量、储量及其释放率,分析植物多样性指数与凋落物层现存量、养分元素含量的相关性。结果表明:1)凋落物层及各分解层凋落物现存量随着植被恢复而增加;同一恢复阶段D层凋落物现存量最高,占凋落物层现存量的41.59%-51.02%,不同分解层凋落物现存量的差异随着植被恢复而增大;各恢复阶段凋落物分解率为0.44-0.61,周转期为1.65-2.28 a。2)凋落物层及各分解层凋落物主要养分元素含量均表现为:N > Ca > Mg > K > P,随着植被恢复呈现出不同的变化特征,其中N、P含量总体上呈增加趋势,K含量LAG(除U层外)最高,PLL最低,Ca含量LCQ最高,PLL最低,Mg含量LAG(除U层外)最高,LVR最低;同一恢复阶段N、P(除PLL、LAG外)、K、Ca、Mg含量随着凋落物的分解而下降。3)不同恢复阶段凋落物层主要养分元素的储量依次为:N > Ca > Mg > K > P;凋落物层及各分解层凋落物主要养分元素总储量及各种养分元素的储量总体上随着植被恢复而增加;同一恢复阶段随着凋落物的分解,N、P储量增加,而K、Ca、Mg储量变化不大;随着植被恢复,凋落物层养分元素储存能力和转化归还能力提高,特别是N,养分元素总释放率下降,有利于养分的固持。4)乔木层、灌木层、草本层的植物多样性指数对凋落物层现存量和主要养分元素含量的影响不同,其中乔木层的影响最明显。  相似文献   

9.
Managed fallows which recover nutrients more rapidly than natural secondary vegetation may improve the performance of shifting agriculture systems operating under inadequately long fallow cycles. Our objective was to construct nutrient balances for the soil, vegetation, and litter compartments of six planted leguminous fallows and natural secondary vegetation during 53 months. The fallows were planted on a previously cultivated Ultisol (Acrisol) in the Peruvian Amazon and included:Centrosema macrocarpum (Centrosema),Pueraria phaseoloides (Pueraria),Stylosanthes guianensis (Stylosanthes),Desmodium ovalifolium (Desmodium),Cajanus cajan (Cajanus), andInga edulis (Inga). In addition, in the natural fallow treatment secondary vegetation was allowed to establish and grow naturally. Quantities of extractable P, K, Ca, and Mg, total N, and organic C in soil to a 45 cm depth, and macrouttrients in aboveground biomass, roots, and litter were estimated at fallow planting, at 8, 17, and 29 months afterward, and at fallow clearing (53 months). Total N stocks increased by 10% in the Stylosanthes, Desmodium, Pueraria, and Inga treatments, but changed little in the Cajanus, Centrosema and natural fallows. This difference was largely due to greater net increases in both soil and vegetation compartments in the former group of treatments. In the Inga, Desmodium, and natural fallows, total stocks of P and K at 53 months were about 40% to 80% greater and 12% greater, respectively, than initial values, but Ca and Mg stocks were reduced by 25% to 40%. In the other treatments, there was generally little change in P stocks, but large (30% to 60%) reductions in K, Ca, and Mg during the course of the fallow. Although there were net decreases of stocks of P, K, Ca, and Mg in soil in all treatments during the fallow, storage of P and K in vegetation and litter in the Inga, Desmodium, and natural fallows offset losses of these nutrients from soil. These treatments also tended to accumulate more Ca and Mg in biomass and litter than the other treatments. These results suggest that leguminous fallow vegetation that accumulates large amounts of biomass may increase N, P, and K stocks, but that incomplete recuperation of Ca and Mg may limit the sustainability of short-rotation fallow-based systems on acidic, infertile soils. ei]Section editor: G R Stewart  相似文献   

10.
We measured the amount of N, P, K, Ca, Mg, Fe, B, Mn, Na, Sr, Cu and Zn in above- and belowground parts of cattails (Typha latifolia L.) every 2 weeks during the growing season (April–October) in plants growing in a marsh on the shore of Lake Mendota, Wisconsin. Elements differed considerably in their distribution between above- and belowground parts and the amount of apparent exchange between parts. The ratio of the amount of an element in aboveground plant parts to that belowground (A:B) was between 1:1 and 2:1 for most elements, as compared with the 2.2:1 ratio of biomass. The maximum amounts of Fe and Zn belowground exceeded their aboveground maxima, while K, Ca and Mn had A:B ratios greater than 2:1. N, P and K in belowground plant parts decreased considerably during the spring, and belowground decreases were large enough to be potentially important sources of these elements for shoot growth. Belowground stores of Ca, Mg, Mn, Na and Sr decreased little in the spring and do not function as reserves.  相似文献   

11.
Wastewaters from tannery industry are complex in composition and providing adequate treatment can be difficult. Constructed wetlands (CW) are regarded as an alternative treatment to the conventional biological systems, as a developing cost-effective and environmentally friendly phytoremediation technology. The present review compiles and integrates information on CWs technology for the needs of the tannery sector. The following issues arise as crucial for the implementation of such systems, namely i) an accurate wastewater characterization and an effective pretreatment before reaching the CW, ii) choosing the plants species better adapted to the imposed conditions, iii) substrate selection and iv) range of organic loadings applied. The examples practiced in Portugal give indication that horizontal subsurface flow systems, with expanded clay media, are a suitable option to be considered when dealing with high organic loading tannery wastewater (up to c.a. 3800 kgCODha?1d?1), being resilient to a wide range of hydraulic variations. Plants such as Phragmites and Typha have shown to be adequate for tannery wastewater depuration, with Arundo donax proving resilient to high salinity wastewaters. The flexibility of implementation allows the CW to be adapted to different sites with different configurations, being suitable as main secondary or tertiary treatment stage.  相似文献   

12.
Plant species diversity affects plant nutrient pools, however, previous studies have not considered plant nutrient concentrations and biomass simultaneously. In this study, we conducted an experimental system with 90 microcosms simulating constructed wetlands (CWs). Four species were selected to set up a plant species richness gradient (1, 2, 3, 4 species) and fifteen species compositions. The plant biomass, plant N, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations and pools were analyzed. Results showed that, (1) plant species richness increased plant biomass, and the presence of Oenanthe javanicae increased while the presence of Reineckia carnea decreased plant biomass; (2) plant species richness only increased plant K and Mg concentrations of the communities and plant Mg concentration of the species, and the presence of O. Javanica increased while the presence of R. Japonicus decreased plant N and P concentrations of the communities; (3) plant species richness increased plant N, P, K, Ca, and Mg pools, and the presence of O. Javanica increased while the presence of R. Carnea decreased plant N, P, K, Ca and Mg pools; (4) the four-species mixture produced more biomass and nutrient pools than the corresponding highest specific species monocultures. In case the plant uptake can remove nutrients from CWs through harvesting, the results suggest that both nutrient concentrations and biomass must be considered when evaluating the accumulation of nutrients. Assembling plant communities with high species richness (four species) or certain species (such as O. Javanica) is recommended to remove more nutrients from CWs through harvesting.  相似文献   

13.
Otolith chemistry was used to study the stock structure of Channa punctata collected from the River Ganga and its tributaries, the rivers Yamuna and Gomti. Whole sagittal otoliths were subjected to acid digestion to analyse the trace elements (Ca, Na, Mg, Sr, Mn, Ba, Fe and K) using ICP‐AES. Data were subjected to appropriate statistical treatments, such as univariate anova , ancova , manova and DFA in order to delineate the fish stock(s) accurately. Mean concentrations of Ca, Mg, Sr, Mn, Ba, Fe and K in the otoliths of the fish from selected sites of the different rivers were significantly (P < 0.001) different from each other, while the mean Na concentrations were comparable (P > 0.05). In classification statistics, 96% of individuals were correctly classified to their original groups. The scatter plot of DF‐I vs DF‐II depicted the presence of different stocks in the River Ganga and its selected tributaries. Variations in the microchemistry of the otoliths showed the presence of four C. punctata stocks in the three selected rivers.  相似文献   

14.
High rainfall in subtropical regions can leach cation elements from ecosystems, which may limit plant growth. Plants often develop efficient resorption patterns to recycle elements, but there is relatively little available information on this topic. In February 2012, a common garden was established in a subtropical forest by planting dominant trees from the area. Green and senescent leaves were sampled from 11 tree species. The concentrations of potassium (K), calcium (Ca), sodium (Na) and magnesium (Mg) were determined, and the resorption efficiencies were calculated. The results showed significant K, Na and Mg resorption in most of the investigated tree species, while Ca mainly displayed accumulation. Evergreen coniferous and evergreen broad-leaved trees (such as Cunninghamia lanceolata, Pinus massoniana, Cinnamomum camphora, and Michelia macclurei) exhibited relatively higher resorption efficiencies of K (39.0%–87.5%) and Na (18.3%–50.2%) than deciduous broad-leaved trees. Higher Mg resorption efficiencies (>50%) were detected in Liriodendron chinense, C. lanceolata and P. massoniana than in other trees. Overall, evergreen coniferous and evergreen broad-leaved trees could show higher cation resorption than deciduous broad-leaved trees. K and Mg resorption efficiencies and Ca accumulation decrease with increasing nutrient concentrations in green leaves. Our results emphasize that nutrient resorption patterns largely depend on elements and plant functions, which provides new insights into the nutrient use strategies of subtropical plants and a reference for the selection of suitable tree species in this region.  相似文献   

15.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

16.
V. R. Smith 《Polar Biology》1988,8(3):191-211
Summary Studies of plant standing crop and nutrient concentrations have enabled an assessment of the seasonal changes in nutrient standing stocks (the mass of nutrients per m2) in a fjaeldmark and two fernbrake communities on Marion Island (46°54S, 37°45E). These communities are an important component of the island's vegetation on rocky plateaux and slopes. For most species the aboveground accumulations of N, P and K early in the season were more rapid than increases in the aerial biomass. Rates of Ca, Mg or Na accrual were either similar to, or lower than, rates of aboveground growth. Nutrient (N+P+K+Ca+Mg+Na) standing stocks at the three communities were high; 71 g m-2 at fjaeldmark, 116 g m-2 at open fernbrake and 154 g m-2 at closed fernbrake. The aboveground component accounted for 47% to 65% of these values. N was the most abundant element in the vegetation, followed by K (closed fernbrake) or Ca (open fernbrake and fjaeldmark). Nutrient standing stocks at the two fernbrakes were mostly higher than for most sub-Arctic and alpine dwarf-shrub tundras. Nutrient pool sizes (i.e. the total quantities of nutrients contained in the soil/plant system to a depth of 25 cm) were lower than those reported for arctic tundra meadows but were similar to, and often greater than, those found at heath communities, sub-Arctic dry meadows and dwarf-shrub tundras and some boreal forests. Annual net primary productions of the fernbrake vegetations were high and substantial quantities of nutrients are aquired annually from the soils by the vegetations. Depending on plant species, either N or K was the element taken up in the largest quantity, whereas P was mostly taken up in the lowest amount. A large proportion (mostly all) of the Ca and Mg and a substantial proportion of the N taken up aboveground was lost in the litterfall but little of K taken up was lost in this way.  相似文献   

17.
Lenssen  J.P.M.  Menting  F.B.J.  Van der Putten  W.H.  Blom  C.W.P.M. 《Plant Ecology》2000,147(1):137-146
In riparian wetlands total standing crop often fails to account for a significant part of the observed variation in species richness and species composition within communities. In this study, we used abundance of the dominant species instead of total standing crop as the biotic predictor variable and investigated its relationships with species composition and species richness in communities dominated by Phragmites australis (Cav.) Trin. ex Steudel. This was done by measuring soil organic matter content, litter cover and elevation, Phragmites abundance (standing crop and stem density) and species composition in 78 relevés. In addition, we tried to identify the environmental boundaries of Phragmites communities by sampling relevés in neighbouring communities.Two gradients were related to a decline in Phragmites abundance: one gradient, perpendicular to the shoreline, was mainly related to increased elevation and the second gradient ran parallel to the shoreline and was related to increased amounts of soil organic matter. Within the relevés dominated by Phragmites, stem density of Phragmites and litter cover were the only factors significantly related to species composition in the RDA solution. Litter cover and standing crop of the dominant accounted for 64% of the variation in species richness within the Phragmites-dominated community. These results show that dead and living biomass of the dominant species may account for a substantial part of the variation in species composition and species richness within a single community.  相似文献   

18.
Common reed (Phragmites australis) and reed canarygrass (Phalaris arundinacea) are two most commonly used plant species in constructed wetlands for wastewater treatment in the Czech Republic. Growth characteristics of both plants (biomass, stem count, and length) have been measured in 13 horizontal sub-surface flow constructed wetlands since 1992. The results revealed that while Phalaris usually reaches its maximum biomass as early as during the second growing season, Phragmites usually reaches its maximum only after three to four growing seasons. The maximum biomass of both species varies widely among systems and the highest measured values (5070 g m−2 for Phragmites and 1900 g m−2 for Phalaris) are similar to those found in eutrophic natural stands. The shoot count of Phragmites decreases after the second growing season while length and weight of individual shoots increases over time due to self-thinning process. Number of Phalaris shoots is the highest during the second season and then the shoot count remains about the same. Also the shoot length remains steady over years of constructed wetland operation.  相似文献   

19.
Expansion of Phragmites australis (Cav.) Trin. ex Steud. (common reed) into stands of Typha spp. (cattail; Typha australis L. and T. x glauca) is common in the wetlands of northwestern Indiana (USA). To understand this phenomenon better, we investigated the production of shoot sprouts and proportional allocation of biomass as well as a potential role for the water table in the relative dominance of each species. The reduction in sprouts from rhizomes upon vegetative expansion of Phragmites appeared to be the most likely process causing the decline of Typha. The latter had a shoot density of 39/m2 in plots without Phragmites, but this dropped to 13 shoots m−2 in plots that had been invaded by Phramites. Such a decline was likely caused by reduced reserves; e.g., the belowground biomass of Typha decreased from 11.3 g m−2 without Phragmites to 8.1 g m−2 with Phragmites. The latter also reduced its belowground biomass but not its shoot density in the presence of Typha. The mean weight of Phragmites shoots was 2.9 g, and nearly all produced inflorescences. Meanwhile, Typha failed to develop spadices despite its shoots having a greater biomass (7 g). This suggests that Phragmites is more efficient than Typha in shoot growth. Springtime flooding appeared to promote the sprout of Typha shoots from shallow rhizomes (≈18 cm below the soil surface), whereas the shoot density of Phragmites showed no correlation with water level in that season. Deep-rooted Phragmites (≈39 cm) occurred on both high and low water-table sites, whereas the shallow-rooted Typha was limited to only the former. Phragmites will likely continue its expansion, by vegetative sprouts from rhizomes, into Typha wetlands.  相似文献   

20.
With the rapid development of scaled anaerobic digestion of pig manure, the generation of liquid anaerobic digestate exceeds the farmland loading capacity, causing serious environmental pollution. Three laboratory‐scale horizontal subsurface flow constructed wetlands (CWs; planted + aeration, planted, and unplanted) were set up to investigate the feasibility of liquid digestate treatment in wetlands. Treatment capacity in different wetlands was evaluated under different influent concentrations (chemical oxygen demand [COD], 5 days biochemical oxygen demand [BOD5], and nitrogen forms). The effect of aeration and effluent recirculation on organic matter and total nitrogen removal was investigated. Results showed that integrating intermittent aeration in CWs significantly improved the oxygen condition (p < 0.01) in the wetland bed and promoted BOD5 removal to 90% in aerated CWs as compared with <15% in the unaerated CWs. Meanwhile, COD removal between these three wetlands did not show any difference and varied from 52 to 72% under influent concentration of 200–820 mg/L because of the high content of hard‐degradable organic matter in the liquid digestate. Intermittent aeration resulted in high ammonium removal (>98%) although the influent loading varied from 65 to 350 mg/L. However, intermittent aeration caused nitrate accumulation of 300 mg/L and limited total nitrogen (TN) removal of 33%. To intensify the TN removal, we verified effluent recirculation to increase the removal efficiency of TN to 78%. These results not only show the potential application of CWs for treatment of high‐strength liquid anaerobic digested slurry, but also indicate the significance of intermittent aeration on the enhanced removal of organic matter and ammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号