首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of cerulenin on the production of -lactamase and other periplasmic proteins was studied in Escherichia coli IA199 carrying plasmid pBR322. Cerulenin (10 to 25 g/ml) had almost no effect on the growth rate of E. coli but it decreased the amount of -lactamase and other periplamic proteins in shock fluid. Higher amounts of the antibiotic (40 to 100 g/ml)decreased turbidity and almost completely prevented synthesis of -lactamase and other periplasmic proteins. Cerulenin decreased incorporation of l-[35S]methionine into membranes during growth as well. Spheroplasts secreted -lactamase into the external medium, but during a 3-h incubation in the presence of cerulenin (25 g/ml) this secretion was prevented by more than 90%. -Lactamase was secreted into the isolated membrane vesicles from E. coli IA199. However, only 5% of the total amount of pre--lactamase was secreted and processed by the membranes in vitro. Cerulenin did not prevent processing in vitro but the membranes prepared from the cells grown in the presence of cerulenin (25 g/ml) did not catalyze processing of pre--lactamase at all. Membrane preparations from Bacillus subtilis did not process pre--lactamase either in the absence or in the presence of cerulenin.  相似文献   

2.
One of the efficient modes of treatments of chronic hypertension and cardiovascular disorders has been to restrain the formation of angiotensin-II by inhibiting the action of angiotensin-converting enzyme (ACE) on angiotensin-I. The efforts continue towards achieving superior molecules or drugs with improved affinities, better bioavailability and thus to achieve long duration of action with minimum side effects. Previously, we reported a library of tripeptidomimics of Ornithyl–Proline (Orn–Pro) conjugated with various unnatural amino acids and carboxylic acid derived heterocyclics based on the SAR studies of existing ACE inhibitors. Their synthesis and screening for possible inhibitors of angiotensin-converting enzyme (ACE) revealed that increase in the backbone chain length by one carbon atom results in a sudden decrease in their activity. Therefore, in the present study heterocycles with different chain length were introduced to interact with the hydrophobic S2 sub-site of ACE and screened for their in vitro ACE inhibition activity. Further, their binding interaction with C-domain of somatic ACE was also determined. Docking and consequent LUDI scores showed good correlation with binding of these molecules in the active site of ACE. Results suggest that heterocycles with C3 chain length are more appropriate for the effective binding of the tripeptidomimics within the active site of ACE.  相似文献   

3.
Generating diverse protein libraries that contain improved variants at a sufficiently high frequency is critical for improving the properties of proteins using directed evolution. Many studies have illustrated how random mutagenesis, cassette mutagenesis, DNA shuffling and similar approaches are effective diversity generating methods for directed evolution. Very few studies have explored random circular permutation, the intramolecular relocation of the N- and C-termini of a protein, as a diversity-generating step for directed evolution. We subjected a library of random circular permutations of TEM-1 β-lactamase to selections on increasing concentrations of a variety of β-lactam antibiotics including cefotaxime. We identified two circularly permuted variants that conferred elevated resistance to cefotaxime but decreased resistance to other antibiotics. These variants were circularly permuted in the Ω-loop proximal to the active site. Remarkably, one variant was circularly permuted such that the key catalytic residue Glu166 was located at the N-terminus of the mature protein.  相似文献   

4.
Aminocitrate (and homolog) derivatives have been prepared by bis-alkylation of glycinate Schiff bases with bromoacetates (and ethyl acrylate), followed by N-acylation and esters (partial or complete) deprotection. Aminoisocitrate was similarly obtained by mono-alkylation with diethyl fumarate. Evaluation against representative β-lactamases revealed that the free acid derivatives are modest inhibitors of class A enzymes, whilst their benzyl esters showed a good inhibition of OXA-10 (class D enzyme). A docking experiment featured hydrophobic interactions in the active site.  相似文献   

5.
6.
Barman A  Schürer S  Prabhakar R 《Biochemistry》2011,50(20):4337-4349
In this combined MD simulation and DFT study, interactions of the wild-type (WT) amyloid precursor protein (APP) and its Swedish variant (SW), Lys670 → Asn and Met671 → Leu, with the beta-secretase (BACE1) enzyme and their cleavage mechanisms have been investigated. BACE1 catalyzes the rate-limiting step in the generation of 40-42 amino acid long Alzheimer amyloid beta (Aβ) peptides. All key structural parameters such as position of the flap, volume of the active site, electrostatic binding energy, structures, and positions of the inserts A, D, and F and 10s loop obtained from the MD simulations show that, in comparison to the WT-substrate, BACE1 exhibits greater affinity for the SW-substrate and orients it in a more reactive conformation. The enzyme-substrate models derived from the MD simulations were further utilized to investigate the general acid/base mechanism used by BACE1 to hydrolytically cleave these substrates. This mechanism proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. For the WT-substrate, the overall barrier of 22.4 kcal/mol for formation of the gem-diol intermediate is 3.3 kcal/mol higher than for the SW-substrate (19.1 kcal/mol). This process is found to be the rate-limiting in the entire mechanism. The computed barrier is in agreement with the measured barrier of ca. 18.00 kcal/mol for the WT-substrate and supports the experimental observation that the cleavage of the SW-substrate is 60 times more efficient than the WT-substrate.  相似文献   

7.
Establishing a quantitative understanding of the determinants of affinity in protein–protein interactions remains challenging. For example, TEM‐1/β‐lactamase inhibitor protein (BLIP) and SHV‐1/BLIP are homologous β‐lactamase/β‐lactamase inhibitor protein complexes with disparate Kd values (3 nM and 2 μM, respectively), and a single substitution, D104E in SHV‐1, results in a 1000‐fold enhancement in binding affinity. In TEM‐1, E104 participates in a salt bridge with BLIP K74, whereas the corresponding SHV‐1 D104 does not in the wild type SHV‐1/BLIP co‐structure. Here, we present a 1.6 Å crystal structure of the SHV‐1 D104E/BLIP complex that demonstrates that this point mutation restores this salt bridge. Additionally, mutation of a neighboring residue, BLIP E73M, results in salt bridge formation between SHV‐1 D104 and BLIP K74 and a 400‐fold increase in binding affinity. To understand how this salt bridge contributes to complex affinity, the cooperativity between the E/K or D/K salt bridge pair and a neighboring hot spot residue (BLIP F142) was investigated using double mutant cycle analyses in the background of the E73M mutation. We find that BLIP F142 cooperatively stabilizes both interactions, illustrating how a single mutation at a hot spot position can drive large perturbations in interface stability and specificity through a cooperative interaction network. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Summary The formation and localization of the -lactamase of Acinetobacter calcoaceticus CCM 5593 is strongly affected by cultivation and induction conditions. Optimal parameters for enzyme yield are cultivation on minimal salts medium with acetate (10 g·1–1) as carbon source and addition of yeast extract (5–10 g·l–1), induction by cefotaxime (50g·ml–1) immediately after inoculation and growth for 24 h at 25° C. The strain forms a basal level of -lactamase constitutively [70 units (U)·g–1]. Nearly all of this was found to be cell-bound. However, -lactamase activity additionally produced after induction (up to 500 U·g–1 wet bacteria) was located in the culture medium (up to 96%). This unusual localization is a special feature of A. calcoaceticus and is not attributed to cell lysis. Offprint requests to: P. Borneleit  相似文献   

9.
10.

Background  

The aim of this study was to analyze the significance of leucine to proline substitution at position 138(Leu138Pro) on the hydrolysis of penicillin and ampicillin that we identified in the bla SHV gene of clinical Escherichia coli swine isolate.  相似文献   

11.
Summary Escherichia coli -D-galactosidase (EC 3.2.1.23) was entrapped in polyion complex-stabilized alginate gel beads together with a lectin fromRicinus communis (RCA1 lectin). The rate of entrapped enzyme-catalyzed hydrolysis of O-nitrophenyl--D-galactoside dramatically increased with an increase in lectin content, and at the maximum level of lection content the entrapped enzyme activity exceeded the native enzyme activity. A rapid decrease in the apparent Km was observed while increasing the lectin content, whereas the Vmax value varied insignificantly.  相似文献   

12.
β-Mannanases (EC 3.2.1.78) can catalyze the cleavage of internal β-1,4-d-mannosidic linkages of mannan backbones, and they have found applications in food, feed, pulp and paper, oil, pharmaceutical and textile industries. Suitable amino acid substitution can promote access to the substrate-binding groove and maintain the substrate therein, which probably improves the substrate affinity and, thus, increases catalytic efficiency of the enzyme. In this study, to improve the substrate affinity of AuMan5A, a glycoside hydrolase (GH) family 5 β-mannanase from Aspergillus usamii, had its directed modification conducted by in silico design, and followed by site-directed mutagenesis. The mutant genes, Auman5A Y111F and Auman5A Y115F, were constructed by megaprimer PCR, respectively. Then, Auman5A and its mutant genes were expressed in Pichia pastoris GS115 successfully. The specific activities of purified recombinant β-mannanases (reAuMan5A, reAuMan5AY111F and reAuMan5AY115F) towards locust bean gum were 152.5, 199.6 and 218.9 U mg?1, respectively. The two mutants were found to be similar to reAuMan5A regarding temperature and pH characteristics. Nevertheless, the K m values of reAuMan5AY111F and reAuMan5AY115F, towards guar gum, decreased to 2.95 ± 0.22 and 2.39 ± 0.33 mg ml?1 from 4.49 ± 0.07 mg ml?1 of reAuMan5A, which would make reAuMan5AY111F and reAuMan5AY115F promising candidates for industrial processes. Structural analysis showed that the two mutants increased their affinity by decreasing the steric conflicts with those more complicated substrates. The results suggested that subtle conformational modification in the substrate-binding groove could substantially alter the substrate affinity of AuMan5A. This study laid a solid foundation for the directed modification of substrate affinities of β-mannanases and other enzymes.  相似文献   

13.
Isofagomine (IFG) is an acid β-glucosidase (GCase) active site inhibitor that acts as a pharmacological chaperone. The effect of IFG on GCase function was investigated in GCase mutant fibroblasts and mouse models. IFG inhibits GCase with K(i) ~30 nM for wild-type and mutant enzymes (N370S and V394L). Fibroblasts treated with IFG at μM concentrations showed enhancement of WT and mutant GCase activities and protein levels. Administration of IFG (30 mg/kg/day) to the mice homozygous for GCase mutations (V394L, D409H, or D409V) led to increased GCase activity in visceral tissues and brain extracts. IFG effects on GCase stability and substrate levels were evaluated in a mouse model (hG/4L/PS-NA) that has doxycycline-controlled human WT GCase (hGCase) expression driven by a liver-specific promoter and is also homozygous for the IFG-responsive V394L GCase. Both human and mouse GCase activity and protein levels were increased in IFG-treated mice. The liver-secreted hGCase in serum was stabilized, and its effect on the lung and spleen involvement was enhanced by IFG treatment. In 8-week IFG-treated mice, the accumulated glucosylceramide and glucosylsphingosine were reduced by 75 and 33%, respectively. Decreases of storage cells were correlated with >50% reductions in substrate levels. These results indicate that IFG stabilizes GCase in tissues and serum and can reduce visceral substrates in vivo.  相似文献   

14.
This is an investigation of the effects of electrolytic lesions (1 mA, 10s, anodal) on the median and dorsal raphé nuclei of Wistar rats on the striatal concentrations ofp-tyrosine,p-tyramine,m-tyramine, DA, DOPAC, and HVA. The extent of the lesions was estimated in terms of the depletion of 5-hydroxytryptamine and 5-hydroxyindole acetic acid as well as histological examination of the lesioned area. The results show that the raphé nuclei lesions increased rat striatal levels of DOPAC and HVA while levels of DA were unaffected, an effect that was observed within the first day after the lesions were made. The increases in DOPAC and HVA were accompanied by a reduction in striatalp-tyramine and an increase inm-tyramine. The results further support the existence of a reciprocal relationship betweenp-andm-tyramine concentration and dopamine metabolism. Previous experiments have demonstrated depletion ofp-TA following nigral lesions. The present results are, therefore, important in relation to tyramine distribution in brain. Thep-andm-tyramine concentrations were not reduced at 7 days after the raphé nuclei lesions indicating that if the striatal tyramine-containing neurons exist, they do not originate in or pass through the dorsal or median raphé nuclei.  相似文献   

15.
The clinical and environmental infections caused by AmpC β-lactamases have been increasingly reported recently. In this study, we characterize the novel chromosome-encoded AmpC β-lactamase SFDC-1 identified in Serratia fonticola strain R28, which was isolated from a rabbit raised on a farm in southern China. SFDC-1 shared the highest amino acid identity of 79.6% with the functionally characterized AmpC β-lactamase gene blaYRC-1, although it had highly homologous functionally uncharacterized relatives in the same species from different sources, including some of the clinical significance. The cloned blaSFDC-1 exhibited resistance to a broad spectrum of β-lactam antibiotics, including most cephalosporins with the highest resistance to ampicillin, cefazolin and ceftazidime, with increased MIC levels ≥128-fold compared with the control strains. The purified SFDC-1 showed catalytic activities against β-lactams with the highest catalytic activity to cefazolin. The genetic context of blaSFDC-1 and its relatives was conserved in the chromosome, and no mobile genetic elements were found surrounding them.  相似文献   

16.
17.
Flavoenzymes have been extensively studied for their structural and mechanistic properties because they find potential application as industrial biocatalysts. They are attractive for biocatalysis because of the selectivity, controllability and efficiency of their reactions. Some of these enzymes catalyse the oxidative modification of protein substrates. Among them oxygenases (monoxoygenases and dioxygenases) are of special interest because they are highly entantio as well as regio-selective and can be used for oxyfunctionalisation. Dioxygenase enzymes catalyse oxygenation reactions in which both di-oxygen atoms are incorporated into the product. A dioxygenase enzyme purified from Aspergillus fumigatus MC8 was subjected to protein digestion followed by peptide sequencing. The sequence analysis of the peptide fragments resulted in identifying its match with that of an extracellular dioxygenase sequence from the same species of fungus existing in the protein database. The sequence was submitted to protein homology/analogy recognition engine online server for homology modelling and the 3D structure was predicted. Subsequently, the in silico studies of the enzyme–substrate (protein–ligand) interaction were carried out by using the method of molecular docking simulations wherein the modelled dioxygenase enzyme (protein) was docked with the substrates (ligands), catechin and epicatechin.  相似文献   

18.
The kinetic characteristics and the EDTA inhibition of microsomal 5′-nucleotidase from bovine brain cortex were studied and compared with the properties of the enzyme solubilized with Lubrol WX. The Km value after enzyme solubilization was not significantly different from that of the membrane-bound enzyme. Likewise, di- and trinucleotides performed a similar competitive inhibition of the two forms of the enzyme. In contrast, divalent cations inhibited the intact microsomal enzyme activity at the same concentrations in which they increased the soluble-enzyme activity. The solubilization of microsomal 5′-nucleotidase did not change the progressive and irreversible character of the EDTA inhibition, but the mechanism of the irreversible inhibition was different. The addition of divalent metal cations did not affect the irreversibility of either inhibition, even though the effect on the residual activities was different. The Arrhenius plot of the 5′-nucleotidase activity in intact microsomal fraction exhibited a well-defined break at 31 ± 0.1°C, whereas that of the solubilized enzyme was a straight line. It is concluded then that microsomal 5′-nucleotidase from bovine brain cortex does not require the membrane environment to express its activity, although the influence of this lipidic environment was evident in the differences observed in the enzyme activity modulation by EDTA, cations and temperature.  相似文献   

19.
20.
In the N-terminal domain of thermolysin, two anti-parallel β-strands, Asn112-Ala113-Phe114-Trp115 and Ser118-Gln119-Met120-Val121-Tyr122 are connected by an Asn116-Gly117 turn to form a β-hairpin structure. In this study, we examined the role of Asn116 in the activity and stability of thermolysin by site-directed mutagenesis. Of the 19 Asn116 variants, four (N116A, N116D, N116T and N116Q) were produced in Escherichia coli, by co-expressing the mature and pro domains separately, while the other 15 were not. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-l-leucine amide (FAGLA) at 25°C, the intrinsic k(cat)/K(m) value of N116D was 320% of that of the wild-type thermolysin (WT), and in the hydrolysis of N-carbobenzoxy-l-aspartyl-l-phenylalanine methyl ester (ZDFM) at pH 7.5 at 25°C, the k(cat)/K(m) value of N116D was 140% of that of WT, indicating that N116D exhibited higher activity than WT. N116Q exhibited similar activity as WT, and N116A and N116T exhibited reduced activities. The first-order rate constants, k(obs), of the thermal inactivation at 80°C were in the order N116A, N116D, N116T > N116Q > WT at all CaCl(2) concentrations examined (1-100 mM), indicating that all variants exhibited reduced stabilities. These results suggest that Asn116 plays an important role in the activity and stability of thermolysin presumably by stabilizing this β-hairpin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号