首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   

2.
3.
4.
BldD is a central regulator of the developmental process in Streptomyces coelicolor. The 1.8 angstroms resolution structure of the DNA-binding domain of BldD (BldDN) reveals that BldDN forms a compact globular domain composed of four helices (alpha1-alpha4) containing a helix-turn-helix motif (alpha2-alpha3) resembling that of the DNA-binding domain of lambda repressor. The BldDN/DNA complex model led us to design a series of mutants, which revealed the important role of alpha3 and the 'turn' region between alpha2 and alpha3 for DNA recognition. Based on the fact that BldD occupies two operator sites of bldN and whiG and shows significant disparity in the affinity toward the two operator sites when they are disconnected, we propose a model of cooperative binding, which means that the binding of one BldD dimer to the high affinity site facilitates that of the second BldD dimer to the low affinity site. In addition, structural and mutational investigation reveals that the Tyr62Cys mutation, found in the first-identified bldD mutant, can destabilize BldD structure by disrupting the hydrophobic core.  相似文献   

5.
6.
7.
8.
Structure of the rat alpha 2-macroglobulin-coding gene   总被引:3,自引:0,他引:3  
M Hattori  S Kusakabe  H Ohgusu  Y Tsuchiya  T Ito  Y Sakaki 《Gene》1989,77(2):333-340
Rat alpha 2-macroglobulin (alpha 2M) is an acute-phase protein, i.e., produced upon tissue inflammation. Genomic DNA clones covering the entire sequence of the alpha 2M gene were isolated and characterized by restriction mapping. Southern blotting and (partial) DNA sequencing. The rat alpha 2M gene is approx. 50 kb in length and consists of 36 exons ranging in size from 21 to 229 bp. Two functional domains, a bait region and a thiol ester site, are encoded by the exon 18 and 24, respectively. Several possible regulatory signals such as a TPA-inducible enhancer core, an identifier sequence, purine-pyrimidine alternative stretches and viral enhancer core sequences were identified. Several genomic DNA clones which cross-hybridized with the alpha 2M cDNA probe were also identified. Sequence analysis showed that they possessed sequences identical to a part of the rat alpha 1-inhibitor III cDNA and that they had a strikingly similar exon organization to the alpha 2M gene.  相似文献   

9.
Mutations in mexR yield a multidrug resistance phenotype in nalB mutants of Pseudomonas aeruginosa as a result of derepression of the mexAB-oprM multidrug efflux operon. MexR produced by several nalB strains carried single amino acid changes that compromised MexR stability or its ability to dimerize. Changes at residues L95 and R21, however, produced a stable MexR protein capable of dimerization and, thus, likely compromised DNA binding.  相似文献   

10.
Chicken erythrocyte chromatin and nuclei were labeled with benzo[alpha]-pyrene (B[alpha]P) diol-epoxide (anti) and digested with micrococcal nuclease to mono- and dinucleosomes. Analysis of the distribution of the carcinogen showed that the internucleosomal region bound 3-4 times more carcinogen per unit DNA than did nucleosomes. The enhanced binding of the 'ultimate' carcinogen to the internucleosomal region was similar when isolated chromatin or nuclei were used for in vitro labeling. Furthermore, isolation of the histone core proteins, H2A, H2B, H3 and H4, revealed that only 15% of the carcinogen was associated with the histones and that the majority of the carcinogen was bound to chromosomal DNA. Fluorography of purified nucleosomal histones showed that the covalent association of the carcinogen was mainly with histones H3 and H2B.  相似文献   

11.
The alpha core gragment produced by limited proteolysis contains the cyclic AMP binding domain and the two buried sulfhydryl groups of the cyclic AMP receptor protein. The buried sulfhydryl groups of the alpha core react with 5,5'-dithio-bis(2-nitrobenzoic acid) after denaturation by 3 M urea or digestion with subtilisin. The rate of sulfhydryl modification in the presence of 3 M urea or subtilisin is markedly decreased in the presence of cyclic nucleotides which are proposed to tighten the conformation of the alpha core. Incubation of the alpha core in 3 M urea or dithionitrobenzoic acid does not affect cyclic AMP binding while dithionitrobenzoic acid plus 3 M urea inhibits cyclic AMP binding suggesting a role for the buried sulfhydryls in cyclic AMP binding or their proximity to the cyclic AMP binding domain of the alpha core. The data are consistent with a ligand-induced conformational change in the alpha region of the native cyclic AMP receptor protein that is required for DNA binding.  相似文献   

12.
Upon disulfide bond reduction, the alpha 2-subunit of the dihydropyridine-sensitive Ca2+ channel undergoes a characteristic mobility shift on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis with the concurrent appearance of the three delta peptides delta 1 (25,000 Da), delta 2 (22,000 Da), and delta 3 (17,000 Da). Densitometric scanning of Coomassie Blue-stained gels shows a stoichiometric ration of 1.0:0.31.47:0.08 for the alpha 2-subunit and the delta peptides 1, 2, and 3, respectively. Characterization of the delta peptides using antibodies, photoincorporation of a hydrophobic probe, and lectin staining shows tham to be antigenically similar hydrophobic glycoproteins. Amino-terminal sequence analysis of the delta peptides reveals three identical sequences that match the predicted amino acid sequence of the alpha 2-subunit starting at Ala935. Enzymatic deglycosylation of the reduced alpha 2.delta complex produces individual core peptides of 105,000 and 17,000 Da, respectively. Treatment of skeletal muscle membranes with high pH in the presence of reducing agents is able to extract the larger amino-terminal peptide but not the smaller carboxyl (delta) peptide, consistent with a single transmembrane domain in the carboxyl (delta) region. The data support a model of the alpha 2-subunit in which the propeptide is processed into two chains that remain attached through disulfide linkages.  相似文献   

13.
14.
15.
16.
The 330 residue-long N-terminal domains (NTDs) of beta and beta' subunits of the Escherichia coli RNA polymerase (RPase) core enzyme were found to be significantly homologous to the entire length of its alpha subunit. The C-terminal domains (CTDs) of the RPase beta subunit and DNA primase (dnaG protein) were not only strongly homologous to each other but also considerably homologous to the RPase alpha, suggesting that an alpha subunit-like enzyme must have been commonly ancestral to core enzyme subunits and primase. The N-terminal region (NTR) of RPase alpha was also found to show significant homologies with NTRs of the E. coli EF-Tu and F1-ATPase alpha subunit, and a possible weak homology with ribosomal protein L3. A most important finding was that the C-terminal regions (CTRs) of DNA polymerase (DPase) I, T7 phage DPase and MS2 phage RNA replicase beta subunit are closely homologous with one another. These CTRs showed considerable homologies to RPase alpha NTD and RPase beta CTD. These conclusions are based on statistical evaluations of homologies in base and/or amino acid sequence alignments.  相似文献   

17.
18.
Perrino FW  Harvey S  McNeill SM 《Biochemistry》1999,38(48):16001-16009
The epsilon subunit is the 3'-->5' proofreading exonuclease that associates with the alpha and theta subunits in the E. coli DNA polymerase III. Two fragments of the epsilon protein were prepared, and binding of these epsilon fragments with alpha and theta was investigated using gel filtration chromatography and exonuclease stimulation assays. The N-terminal fragment of epsilon, containing amino acids 2-186 (epsilon186), is a relatively protease-resistant core domain of the exonuclease. The purified recombinant epsilon186 protein catalyzes the cleavage of 3' terminal nucleotides, demonstrating that the exonuclease domain of epsilon is present in the N-terminal region of the protein. The absence of the C-terminal 57 amino acids of epsilon in the epsilon186 protein reduces the binding affinity of epsilon186 for alpha by at least 400-fold relative to the binding affinity of epsilon for alpha. In addition, stimulation of the epsilon186 exonuclease by alpha using a partial duplex DNA is about 50-fold lower than stimulation of the epsilon exonuclease by alpha. These results indicate that the C-terminal region of epsilon is required in the epsilonalpha association. To directly demonstrate that the C-terminal region of epsilon contains the alpha-association domain fusion protein, constructs containing the maltose-binding protein (MBP) and fragments of the C-terminal region of epsilon were prepared. Gel filtration analysis demonstrates that the alpha-association domain of epsilon is contained within the C-terminal 40 amino acids of epsilon. Also, the epsilon186 protein forms a tight complex with theta, demonstrating that the association of theta with epsilon is localized to the N-terminal region of epsilon. Association of epsilon186 and theta is further supported by the stimulation of the epsilon186 exonuclease in the presence of theta. These data support the concept that epsilon contains a catalytic domain located within the N-terminal region and an alpha-association domain located within the C-terminal region of the protein.  相似文献   

19.
A recent crystal structure, at atomic resolution, of the NO38-core chaperone has revealed a decamer comprised of a dimer of pentamers, with each pentamer consisting of closely coupled eight-stranded beta-barrel monomers. This N-terminal core domain of the chaperone shares the Nucleoplasmin family fold and is presumed to assist the binding of the core histones in their assembly into nucleosomes during DNA replication and repair. The present work provides a measure of the hydrophobic residue burial about the different interfaces and centers of the NO38-core multimeric structure. While the hydrophobic "pentameric ring," comprised of the hydrophobic cores of the monomers and prevalence of non-polar residues at their interfaces is observed, a hydrophobic bias with respect to the center of the pentamer is also found, and consequently also expected to contribute to the thermostability of the multimer. Structural and chromatographic analysis had shown the NO38-core chaperone to bind (H3-H4)2 histone tetramers as well as H2A-H2B dimers. The acidic dipole, which reflects the spatial disposition of the acidic residues of the core monomer points to the lateral region of the monomers comprising the oligomers, and thereby, shows it to be the region of charge that would optimally complement the basic charge of the histones in their electrostatic binding to the chaperone. It is also pointed out that the prevalence of basic residues on the short helices of the histone cores also provides regions of charge that would complement histone binding to the chaperone.  相似文献   

20.
ROR alpha 1 and ROR alpha 2 are two isoforms of a novel member of the steroid-thyroid-retinoid receptor superfamily and are considered orphan receptors since their cognate ligand has yet to be identified. These putative receptors have previously been shown to bind as monomers to a DNA recognition sequence composed of two distinct moieties, a 3' nuclear receptor core half-site AGGTCA preceded by a 5' AT-rich sequence. Recognition of this bipartite hormone response element (RORE) requires both the zinc-binding motifs and a group of amino acid residues located at the carboxy-terminal end of the DNA-binding domain (DBD) which is referred to here as the carboxy-terminal extension. In this report, we show that binding of ROR alpha 1 and ROR alpha 2 to the RORE induces a large DNA bend of approximately 130 degrees which may be important for receptor function. The overall direction of the DNA bend is towards the major groove at the center of the 3' AGGTCA half-site. The presence of the nonconserved hinge region which is located between the DBD and the putative ligand-binding domain (LBD) or ROR alpha is required for maximal DNA bending. Deletion of a large portion of the amino-terminal domain (NTD) of the ROR alpha protein does not alter the DNA bend angle but shifts the DNA bend center 5' relative to the bend induced by intact ROR alpha. Methylation interference studies using the NTD-deleted ROR alpha 1 mutant indicate that some DNA contacts in the 5' AT-rich half of the RORE are also shifted 5', while those in the 3' AGGTCA half-site are unaffected. These results are consistent with a model in which the ROR alpha NTD and the nonconserved hinge region orient the zinc-binding motifs and the carboxy-terminal extension of the ROR alpha DBD relative to each other to achieve proper interactions with the two halves of its recognition site. Transactivation studies suggest that both protein-induced DNA bending and protein-protein interactions are important for receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号