首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that Pro74 in human stefin B is critical for fibril formation and that proline isomerization plays an important role. The stefin B P74S mutant did not fibrillate over the time of observation at 25 °C, and it exhibited a prolonged lag phase at 30 °C and 37 °C. The peptidyl prolyl cis/trans isomerase cyclophilin A, when added to the wild-type protein, exerted two effects: it prolonged the lag phase and increased the yield and length of the fibrils. Addition of the inactive cyclophilin A R55A variant still resulted in a prolonged lag phase but did not mediate the increase of the final fibril yield. These results demonstrate that peptidyl prolyl cis/trans isomerism is rate-limiting in stefin B fibril formation.  相似文献   

2.
Proline is unique in the realm of amino acids in its ability to adopt completely distinct cis and trans conformations, which allows it to act as a backbone switch that is controlled by prolyl cis-trans isomerization. This intrinsically slow interconversion can be catalyzed by the evolutionarily conserved group of peptidyl prolyl cis-trans isomerase enzymes. These enzymes include cyclophilins and FK506-binding proteins, which are well known for their isomerization-independent role as cellular targets for immunosuppressive drugs. The significance of enzyme-catalyzed prolyl cis-trans isomerization as an important regulatory mechanism in human physiology and pathology was not recognized until the discovery of the phosphorylation-specific prolyl isomerase Pin1. Recent studies indicate that both phosphorylation-dependent and phosphorylation-independent prolyl cis-trans isomerization can act as a novel molecular timer to help control the amplitude and duration of a cellular process, and prolyl cis-trans isomerization might be a new target for therapeutic interventions.  相似文献   

3.
In proteins and peptides, the vast majority of peptide bonds occurs in trans conformation, but a considerable fraction (about 5%) of X-Pro bonds adopts the cis conformation. Here we study the conservation of cis prolyl residues in evolutionary related proteins. We find that overall, in contrast to local, protein sequence similarity is a clear indicator for the conformation of prolyl residues. We observe that cis prolyl residues are more often conserved than trans prolyl residues, and both are more conserved than the surrounding amino acids, which show the same extent of conservation as the whole protein. The pattern of amino acid exchanges differs between cis and trans prolyl residues. Also, the cis prolyl bond is maintained in proteins with sequence identity as low as 20%. This finding emphasizes the importance of cis peptide bonds in protein structure and function.  相似文献   

4.
We report here the results on N-acetyl-L-proline-N'-methylamide (Ac-Pro-NHMe) calculated at the HF/6-31+G(d) level with the conductor-like polarizable continuum model (CPCM) of self-consistent reaction field methods to investigate the changes of backbone and prolyl ring along the cis-trans isomerization of the prolyl peptide bond. From the potential energy surface, the barrier to ring flip from the down-puckered conformation to the up-puckered one is estimated to be 2.5 and 3.2 kcal/mol for trans and cis conformers of Ac-Pro-NHMe, respectively. In particular, the ring flip seems to be inaccessible in the intermediate regions between trans and cis conformations, because of higher barriers (approximately 13-19 kcal/mol) to rotation of the prolyl peptide bond. The torsion angles for backbone and prolyl ring vary largely around the transition states at omega' approximately 120 degrees and -70 degrees for the prolyl peptide bond. Three kinds of puckering amplitudes show the same trend of puckering along the cis-trans isomerization although their absolute values are different. In particular, trans and cis conformations have the almost same degree of puckering. The cis populations and barriers to rotation of the prolyl peptide bond for Ac-Pro-NHMe are increased with the increase of solvent polarity, which is mainly ascribed to the decreases of relative free energies for cis conformations and the increase of relative free energies for transition states.  相似文献   

5.
The refolding of barstar, the intracellular inhibitor of barnase, is dominated by the slow formation of a cis peptidyl prolyl bond in the native protein. The triple mutant C40/82A P27A in which two cysteine residues and one trans proline were replaced by alanine was used as model system to investigate the kinetics and structural consequences of the trans/cis interconversion of Pro48. One- and two-dimensional real-time NMR spectroscopy was used to follow the trans/cis interconversion after folding was initiated by rapid dilution of the urea denatured protein. Series of 1H, 15N HSQC spectra acquired with and without the addition of peptidyl prolyl isomerase unambiguously revealed the accumulation of a transient trans-Pro48 intermediate within the dead time of the experiment. Subtle chemical shift differences between the native state and the intermediate spectra indicate that the intermediate is predominantly native-like with a local rearrangement in the Pro48 loop and in the beta-sheet region including residues Tyr47, Ala82, Thr85, and Val50.  相似文献   

6.
Two functionally redundant enzymes, trigger factor and the hsp70 chaperone DnaK, have been found to assist de novo protein folding in E coli. Trigger factor is a peripheral peptidyl prolyl cis/trans isomerase (PPIase) of the large subunit of the ribosome. In contrast, DnaK displays two catalytic features: the secondary amide peptide bond cis/trans isomerase (APIase) function supplemented by the ATPase site. APIases accelerate the cis/trans isomerization of nonprolyl peptide bonds. Both enzymes have affinity for an unfolded polypeptide chain. The diminished low temperature cell viability in the presence of trigger factor variants with impaired PPlase activity indicates that the enhancement of folding rates plays a crucial role in protein folding in vivo. For the DnaK-mediated increase in the folding yield in vitro, the minimal model for APlase catalysis involves the catalyzed partitioning of a rapidly formed folding intermediate as could be inferred from the DnaK/DnaJ/GrpE/ATP-assisted refolding of GdmCl-denatured luciferase. Using three different peptide bond cis/trans isomerization assays in vitro, we could show that there is no overlapping substrate specificity of trigger factor and DnaK. We propose that only if trigger factor recruits supplementing molecules is it capable of exhibiting functional complementarity with DnaK in protein folding.  相似文献   

7.
When a protein exhibits complex kinetics of refolding, we often ascribe the complexity to slow isomerization events in the denatured protein, such as cis/trans isomerization of peptidyl prolyl bonds. Does the complex folding kinetics arise only from this well-known reason? Here, we have investigated the refolding of a proline-free variant of staphylococcal nuclease by stopped-flow, double-jump techniques, to examine the folding reactions without the slow prolyl isomerizations. As a result, the protein folds into the native state along at least two accessible parallel pathways, starting from a macroscopically single denatured-state ensemble. The presence of intermediates on the individual folding pathways has revealed the existence of multiple parallel pathways, and is characterized by multi-exponential folding kinetics with a lag phase. Therefore, a "single" amino acid sequence can fold along the multiple parallel pathways. This observation in staphylococcal nuclease suggests that the multiple folding may be more general than we have expected, because the multiple parallel-pathway folding cannot be excluded from proteins that show simpler kinetics.  相似文献   

8.
Hsp90 is an abundant cytosolic molecular chaperone. It controls the folding of target proteins including steroid hormone receptors and kinases in complex with several partner proteins. Prominent members of this protein family are large peptidyl prolyl cis/trans isomerases (PPIases), which catalyze the cis/trans isomerization of prolyl peptide bonds in proteins and possess chaperone activity. In Saccharomyces cerevisiae, two closely related large Hsp90-associated PPIases, Cpr6 and Cpr7, exist. We show here that these homologous proteins bind with comparable affinity to Hsp90 but exhibit significant structural and functional differences. Cpr6 is more stable than Cpr7 against thermal denaturation and displays an up to 100-fold higher PPIase activity. In contrast, the chaperone activity of Cpr6 is much lower than that of Cpr7. Based on these results we suggest that the two immunophilins perform overlapping but not identical tasks in the Hsp90 chaperone cycle.  相似文献   

9.
10.
R K Harrison  R L Stein 《Biochemistry》1990,29(7):1684-1689
Cyclophilin, the cytosolic binding protein for the immunosuppressive drug cyclosporin A, has recently been shown to be identical with peptidyl prolyl cis-trans isomerase [Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., & Schmid, F.X. (1989) Nature 337, 476; Takahashi, N., Hayano, T., & Suzuki, M. (1989) Nature 337, 473]. To provide a mechanistic framework for studies of the interaction of cyclophilin with cyclosporin, we investigated the mechanism of the PPI-catalyzed cis to trans isomerization of Suc-Ala-Xaa-cis-Pro-Phe-pNA (Xaa = Ala, Gly). Our mechanistic studies of peptidyl prolyl cis-trans isomerase include the determination of steady-state kinetic parameters, pH and temperature dependencies, and solvent and secondary deuterium isotope effects. The results of these experiments support a mechanism involving catalysis by distortion in which the enzyme uses free energy released from favorable, noncovalent interactions with the substrate to stabilize a transition state that is characterized by partial rotation about the C-N amide bond.  相似文献   

11.
The influence of steric effects on the helical geometry and the interconversion of type II to type I polyproline in water was examined by the synthesis and analysis of proline dimers and hexamers containing up to three (2S,5R)-5-tert-butylproline residues. In the dimers, the bulky 5-tert-butyl substituent was found to exert a significant influence on the local prolyl amide geometry such that the predominant trans-isomer in N-(acetyl)prolyl-prolinamide (1) was converted to 63% cis isomer in N-(acetyl)prolyl-5-tert-butylprolinamide (2) as measured by (1)H-nmr spectroscopy. Similarly, the presence of a 5-tert-butyl group on the C-terminal residue in the polyproline hexamer Ac-Pro(5)-t-BuPro-NH(2) (4) produced a local 5-tert-butylprolyl amide population containing 61% cis isomer in water. In spite of the presence of a local prolyl cis amide geometry, the downstream prolyl amides in 4 remained in the trans isomer as determined by NOESY spectroscopy. Conformational analysis by (13)C-nmr and CD spectroscopy indicated that Ac-Pro(6)-NH(2) (3) adopted the all-trans amide polyproline type II helix in water. As the amount of 5-tert-butylproline increased from one to three residues in hexamers 4-6, a gradual destabilization of the polyproline type II helical geometry was observed by CD spectroscopy in water; however, no spectrum was obtained, indicative of a complete conversion to a polyproline type I helix. The implications of these results are discussed with respect to the previously proposed theoretical mechanisms for the helical interconversion of polyproline, which has been suggested to occur by either a cooperative C- to N-terminal isomerization of the prolyl amide bonds or via a conformational intermediate composed of dispersed sequences of prolyl amide cis and trans isomers.  相似文献   

12.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

13.
The effect of prolyl bond isomers on the substrate recognition capabilities of various endoproteases may be investigated in a reaction where both cis/trans isomers co-exist. Here we address the question of whether enzyme reactions at the side chain of an amino acid preceding proline proceed through an isomer specific pathway. The proline-directed p42 mitogen-activated protein kinase (ERK2) was used to phosphorylate the serine side chain in Pro-Arg-Ser-Pro-Phe-4-nitroanilide under conditions where different amounts of cis prolyl isomer of the substrate were present. Initial phosphorylation rates were calculated ranging between zero at 100% cis isomer and around 60 pM/min at the equilibrium content of 83.5% trans isomer. In the presence of the peptidyl-prolyl cis/trans isomerase human hFKBP12 (500 nM), cis/trans isomerization proceeds rapidly, permitting the maximal phosphorylation rate to be observed in the dead time of the experiment. Results show that correct signature sequences are not sufficient to render potential substrates reactive to proline-directed enzymatic phosphorylations, but that the conformational state of the peptide bond following serine (threonine) is a critical determinant. Therefore, catalysis by peptidyl-prolyl cis/trans isomerases may add a new level of control to intracellular protein phosphorylations.  相似文献   

14.
M Mücke  F X Schmid 《Biochemistry》1992,31(34):7848-7854
Prolyl isomerases are able to accelerate slow steps in protein refolding that are limited in rate by cis/trans isomerizations of Xaa-Pro peptide bonds. We show here that prolyl isomerizations in the course of protein unfolding are also well catalyzed. To demonstrate catalysis we use cytoplasmic prolyl isomerase from Escherichia coli as the enzyme and reduced and carboxymethylated ribonuclease T1 as the substrate. This form of ribonuclease T1 without disulfide bonds is nativelike folded only in the presence of moderate concentrations of NaCl. Unfolding can be induced by reducing the NaCl concentration at ambient temperature and in the absence of denaturants. Under these conditions prolyl isomerase retains its activity and it catalyzes prolyl cis/trans isomerization in the unfolding protein. Under identical conditions within the NaCl-induced transition unfolding and refolding are catalyzed with equal efficiency. The stability of the protein and thus the final distribution of unfolded and folded molecules attained at equilibrium is unchanged in the presence of prolyl isomerase. These results demonstrate that prolyl isomerase functions in protein folding as an enzyme and catalyzes prolyl isomerization in either direction.  相似文献   

15.
The reversible protein phosphorylation on serine or threonine residues that precede proline (pSer/Thr-Pro) is a key signaling mechanism for the control of various cellular processes, including cell division. The pSer/Thr-Pro moiety in peptides exists in the two completely distinct cis and trans conformations whose conversion is catalyzed specifically by the essential prolyl isomerase Pin1. Previous results suggest that Pin1 might regulate the conformation and dephosphorylation of its substrates. However, it is not known whether phosphorylation-dependent prolyl isomerization occurs in a native protein and/or affects dephosphorylation of pSer/Thr-Pro motifs. Here we show that the major Pro-directed phosphatase PP2A is conformation-specific and effectively dephosphorylates only the trans pSer/Thr-Pro isomer. Furthermore, Pin1 catalyzes prolyl isomerization of specific pSer/Thr-Pro motifs both in Cdc25C and tau to facilitate their dephosphorylation by PP2A. Moreover, Pin1 and PP2A show reciprocal genetic interactions, and prolyl isomerase activity of Pin1 is essential for cell division in vivo. Thus, phosphorylation-specific prolyl isomerization catalyzed by Pin1 is a novel mechanism essential for regulating dephosphorylation of certain pSer/Thr-Pro motifs.  相似文献   

16.
应用RT-PCR方法从人淋巴细胞中扩增出亲环素B(cyclophilinB,CyPB)基因,克隆入pET-28a载体中表达.表达产物以包涵体形式存在,占细菌可溶性蛋白的15%.经Ni-NTA树脂金属螯合亲和层析和SephadexG-50柱层析纯化,SDS-PAGE检测呈单一条带,毛细管电泳为单一色谱峰,纯度达95%.经复性处理,表达产物显示肽基脯氨基顺反异构酶活性  相似文献   

17.
18.
The hPar14 protein is a peptidyl prolyl cis/trans isomerase and is a human parvulin homologue. The hPar14 protein shows about 30 % sequence identity with the other human parvulin homologue, hPin1. Here, the solution structure of hPar14 was determined by nuclear magnetic resonance spectroscopy. The N-terminal 35 residues preceding the peptidyl prolyl isomerase domain of hPar14 are unstructured, whereas hPin1 possesses the WW domain at its N terminus. The fold of residues 36-131 of hPar14, which comprises a four-stranded beta-sheet and three alpha-helices, is superimposable onto that of the peptidyl prolyl isomerase domain of hPin1. To investigate the interaction of hPar14 with a substrate, the backbone chemical-shift changes of hPar14 were monitored during titration with a tetra peptide. Met90, Val91, and Phe94 around the N terminus of alpha3 showed large chemical-shift changes. These residues form a hydrophobic patch on the molecular surface of hPar14. Two of these residues are conserved and have been shown to interact with the proline residue of the substrate in hPin1. On the other hand, hPar14 lacks the hPin1 positively charged residues (Lys63, Arg68, and Arg69), which determine the substrate specificity of hPin1 by interacting with phosphorylated Ser or Thr preceding the substrate Pro, and exhibits a different structure in the corresponding region. Therefore, the mechanism determining the substrate specificity seems to be different between hPar14 and hPin1.  相似文献   

19.
Prolyl isomerases catalyze the cis/trans isomerization of peptide bonds preceding proline. Previously, we had determined the specificity toward the residue before the proline for cyclophilin-, FKBP-, and parvulin-type prolyl isomerases by using proline-containing oligopeptides and refolding proteins as model substrates. Here, we report the specificities of members of these three prolyl isomerase families for the residue following the proline, again in short peptide and in refolding protein chains. Human cyclophilin 18 and parvulin 10 from Escherichia coli show high activity, but low specificity, with respect to the residue following the proline. Human FKBP12 prefers hydrophobic residues at this position in the peptide assays and shows a very low activity in the protein folding assays. This activity was strongly improved, and the sequence specificity was virtually eliminated after the insertion of a chaperone domain into the prolyl isomerase domain of human FKBP12.  相似文献   

20.
Autoinhibition is being widely used in nature to repress otherwise constitutive protein activities and is typically regulated by extrinsic factors. Here we show that autoinhibition can be controlled by an intrinsic intramolecular switch afforded by prolyl cis-trans isomerization. We find that a proline on the linker tethering the two SH3 domains of the Crk adaptor protein interconverts between the cis and trans conformation. In the cis conformation, the two SH3 domains interact intramolecularly, thereby forming the basis of an autoinhibitory mechanism. Conversely, in the trans conformation Crk exists in an extended, uninhibited conformation that is marginally populated but serves to activate the protein upon ligand binding. Interconversion between the cis and trans, and, hence, of the autoinhibited and activated conformations, is accelerated by the action of peptidyl-prolyl isomerases. Proline isomerization appears to make an ideal switch that can regulate the kinetics of activation, thereby modulating the dynamics of signal response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号