首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Proteoglycans were extracted from the adult human meniscus under dissociative conditions and purified by CsCl-density-gradient centrifugation. The preparations of highest density contained proteoglycan that possessed the ability to interact with hyaluronic acid, was of large subunit size and was composed of chondroitin sulphate, keratan sulphate and sialic acid-containing oligosaccharides. This 'cartilage-like' proteoglycan also exhibited subunit and aggregate structures analogous to those of hyaline-cartilage proteoglycans when examined by electron microscopy. However, the composition of this proteoglycan was more comparable with proteoglycans from immature cartilage than from age-matched cartilage. The preparations from lower density, which were enriched in dermatan sulphate, contained smaller proteoglycan that was not able to interact with hyaluronic acid. This non-aggregating proteoglycan may be structurally distinct from the 'cartilage-like' proteoglycan, which does not contain dermatan sulphate.  相似文献   

2.
Adult human articular cartilage contains a hyaluronic acid-binding protein of Mr 60 000-75 000, which contains disulphide bonds essential for this interaction. The molecule can compete with proteoglycan subunits for binding sites on hyaluronic acid, and can also displace proteoglycan subunits from hyaluronic acid if their interaction is not stabilized by the presence of link proteins. The abundance of this protein in the adult accounts for the reported inability to prepare high-buoyant-density proteoglycan aggregates from extracts of adult human cartilage [Roughley, White, Poole & Mort (1984) Biochem. J. 221, 637-644], whereas the deficiency of the protein in newborn human cartilage allows the normal recovery of proteoglycan aggregates from this tissue. The protein shares many common features with a hyaluronic acid-binding region derived by proteolytic treatment of a proteoglycan aggregate preparation, and this may also represent its origin in the cartilage, with its production increasing during tissue maturation.  相似文献   

3.
Normal adult human articular cartilage in organ culture secretes proteoglycan subunits that cannot initially interact in a normal manner with hyaluronic acid unless the latter is present at high concentrations and a neutral pH is employed. However, if the newly secreted subunit is allowed to mature in the cartilage matrix for up to 12 h, then its ability to interact is indistinguishable from that of its more mature counterparts. This conversion does not take place if the proteoglycan subunits are incubated in dilute solutions in the absence of the cartilage, and it is prevented by culturing at low temperature. The newly secreted proteoglycan subunits can, however, be induced to interact with hyaluronic acid by the presence of link proteins. The complex formed by these three components cannot be dissociated in the presence of hyaluronic acid oligosaccharides, suggesting a normal aggregate configuration. It is thus possible that proteoglycan aggregate formation within the cartilage is initially mediated by the presence of link proteins, which induce a conformational change with the hyaluronic acid-binding region of the proteoglycan subunits, although additional modification may be necessary to render any such change irreversible.  相似文献   

4.
H Keiser 《Biochemistry》1975,14(24):5304-5307
Bovine nasal cartilage proteoglycan aggregates are dissociated and separated by density gradient centrifugation in 4 M guanidine into proteoglycan subunit (PGS) and glycoprotein link (GPL) fractions, the latter containing hyaluronic acid and "link proteins" responsible for aggregate formation. It was previously concluded on the basis of immunodiffusion studies that GPL has two antigenic components, one in common with PGS and one specific for the link proteins. However, in the present study it was found that antisera to PGS, which should lack link proteins, reacted with both "subunit" and "link" components of GPL, and antisera to fragments of PGS derived from the hyaluronic acid-binding portion of the molecule reacted preferentially with the link component. Reduction and alkylation of GPL led to modification of the reactions of both anti-GPL and anti-PGS sera with its link component. These immunodiffusion results indicate that the proteoglycan subunit and the link proteins are immunologically related and suggest that the link proteins may be identical with and derived from the hyaluronic acid binding portion of the proteoglycan subunit.  相似文献   

5.
1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.  相似文献   

6.
The assembly of proteoglycan aggregates in chondrocyte cell cultures was examined in pulse-chase experiments with the use of [35S]sulphate for labelling. Rate-zonal centrifugation in linear sucrose density gradients (10-50%, w/v) was used to separate the aggregated proteoglycans from monomers and to assess the size of the newly formed aggregates. The proportion of aggregates stabilized by link protein was assessed by competition with added exogenous aggregate components. The capacity of the proteoglycans synthesized in culture to compete with exogenous nasal-cartilage proteoglycans for binding was studied in dissociation-reassociation experiments. The results were as follows. (a) The proteoglycan monomers and the hyaluronic acid are exported separately and combined extracellularly. (b) The size of the aggregates increases gradually with time as the proportion of monomers bound to hyaluronic acid increases. (c) All of the aggregates present at a particular time appear to be link-stabilized and therefore not dissociated by added excess of nasal-cartilage proteoglycan monomer or hyaluronic acid oligomers. (d) The free monomer is apparently present as a complex with link protein. The monomer-link complexes are then aggregated to the hyaluronic acid. (e) The aggregates synthesized in vitro and the nasal-cartilage aggregates differ when tested for link-stabilization by incubation at low pH. The aggregates synthesized in vitro were completely dissociated whereas the cartilage proteoglycans remained aggregated. The results obtained from dissociation-reassociation experiments performed at low pH indicate that the proteoglycan monomer synthesized in vitro does not bind the hyaluronic acid or the link protein as strongly as does the nasal-cartilage monomer.  相似文献   

7.
Proteoglycan aggregates were isolated from bovine aorta by extraction with 0.5 M guanidine hydrochloride in the presence of proteinase inhibitors and purified by isopycnic CsCl centrifugation. The bottom two-fifths (A1) of the gradient contained 30% of proteoglycans in the aggregated form. The aggregate had 14.8% protein and 20.4% hexuronic acid with hyaluronic acid, dermatan sulfate and chondroitin sulfates in a proportion of 18:18:69. A link protein-containing fraction was isolated from the bottom two-fifths by dissociative CsCl isopycnic centrifugation. The link protein that floated to the top one-fifth of the gradient was purified by chromatography on Sephadex G-200 in the presence of 4 M guanidine hydrochloride. It moved as a single band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 49 000. The amino acid composition of link protein resembled that of link protein from cartilage, but was strikingly different from that of the protein core of the proteoglycan monomer. The neutral sugar content of link protein was 3.5% of dry weight. Galactose, mannose and fucose constituted 21, 62 and 16%, respectively of the total neutral sugars. In aggregation studies the link protein was found to interact with both proteoglycan monomer and hyaluronic acid. Oligosaccharides derived from hyaluronic acid decreased the viscosity of link protein-free aggregates of proteoglycan and hyaluronic acid but not of link-stabilized aggregates, demonstrating that the link protein increases the stability of proteoglycan aggregates.  相似文献   

8.
Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.  相似文献   

9.
1. Analysis of the purified proteoglycans extracted from normal human articular cartilage with 4M-guanidinium chloride showed that there was an age-related increase in their content of protein and keratan sulphate. 2. The hydrodynamic size of the dissociated proteoglycans also decreased with advancing age, but there was little change in the proportion that could aggregate. 3. Results suggested that some extracts of aged-human cartilage had an increased content of hyaluronic acid compared with specimens from younger patients. 4. Dissociated proteoglycans, from cartilage of all age groups, bind to hyaluronic acid and form aggregates in direct proportion to the hyaluronic acid concentration. 5. Electrophoretic heterogeneity of the dissociated proteoglycans was demonstrated on polyacrylamide/agarose gels. The number of proteoglycan species observed was also dependent on the age of the patient.  相似文献   

10.
The chondrocyte is a specialized cell that synthesizes proteoglycans of a type found only in cartilage and nucleus pulposus. These proteoglycans are distinct in forming multiple aggregates of unique structure in which hyaluronic acid provides a central chain to which many proteoglycan molecules are bound at one end only. Chondrocytes were isolated from adult cartilage and used in suspension culture to test the effect of compounds in the medium on the synthesis of proteoglycans. Hyaluronic acid alone, among a number of compounds extracted from or analogous to those in cartilage, reduced the incorporation of [35S] sulphate into macromolecular material.Oligosaccharides of hyaluronic acid of the size of decasaccharides and above also had this effect but hyaluronic acid already bound to proteoglycan did not. The proportion of total labelled material associated with the cells increased at the expense of that in the medium. Treatment of the cells with trypsin abolished the effect of hyaluronic acid but treatment with chondroitinase did not. It is suggested that hyaluronic acid interacts with proteoglycans at the cell surface by a specific mechanism similar to that involved in proteoglycan aggregation, as a result of which the secretion and synthesis of proteoglycans is reduced.  相似文献   

11.
Cartilage proteoglycan aggregate formation. Role of link protein.   总被引:11,自引:9,他引:2       下载免费PDF全文
Cartilage proteoglycan aggregate formation was studied by zonal rate centrifugation in sucrose gradients. Proteoglycan aggregates, monomers and proteins could be resolved. It was shown that the optimal proportion of hyaluronic acid for proteoglycan aggregate formation was about 1% of proteoglycan dry weight. The reaggregation of dissociated proteoglycan aggregate A1 fraction was markedly concentration-dependent and even at 9 mg/ml only about 90% of the aggregates were reformed. The lowest proportion of link protein required for maximal formation of link-stabilized proteoglycan aggregates was 1.5% of proteoglycan dry weight. It was separately shown that link protein co-sedimented with the proteoglycan monomer. By competition with isolated hyaluronic acid-binding-region fragments, a proportion of the link proteins was removed from the proteoglycan monomers, indicating that the link protein binds to the hyaluronic acid-binding region of the proteoglycan monomer.  相似文献   

12.
1. Proteoglycans were extracted from bovine nasal cartilage with 2.0M-CaC2 or with 0.15M-KCl followed by 2.0M-CaC2.. Proteoglycan fractions were prepared from the extracts by density-gradient centrifugation in CsCl under 'associative' and 'dissociative' conditions. 2. The heterogeneity of the proteoglycan fractions was investigated by large-pore-gel electrophoresis. It was concluded that extracts made with 2.0M-CaCl2 or sequential 2.0M-CaCl2 contain two major species of proteoglycan 'subunit' of different hydrodynamic size, together with proteoglycan aggregates. Both 'subunits' have mobilities that are greater than those of proteoglycans obtained from pig articular cartilage McDevitt & Muir (1971) Anal. Biochem. 44, 612-622] and are therefore probably smaller in size than the latter. 3. Proteoglycan fractions isolated from cartilage extracted lith 0.15M-KCl separated into two main components on large-pore-gel electrophoresis with mobilities greater than those of proteoglycans extracted with 2.0M-CaCl2. Proteoglycans extracted at low ionic strength from bovine nasal cartilage are of similar hydrodynamic size to those extracted from pig articular cartilage under the same conditions [McDevitt & Muir (1971) Anal. Biochem. 44, 612-622]. 4. The role of endogenous proteolytic enzymes in producing proteoglycan heterogeneity, particularly in low-ionic-strength cartilage extracts is discussed. 5. Hyaluronic acid and 'link proteins' were present in the proteoglycan fraction separated from KCl extracts as well as in the fraction separated from CaCl2 extracts. Hyaluronic acid can only be identified in proteoglycan fractions by large-pore-gel electrophoresis after proteolysis and further purification of the fraction. 6. Collagen was extracted by both salt solutions and was tentatively identified as type II. Small amounts of collagen appear to be associated with the proteoglycan-aggregate fraction from the high-ionic-strength extract but not with the corresponding fraction from the KCl extract.  相似文献   

13.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

14.
1. A proteoglycan fraction (the proteoglycan subunit fraction) was prepared from extracts, with 0.15m-KCl (low-ionic-strength) and 0.5m-LaCl(3), 2.0m-CaCl(2) and 4.0m-guanidinium chloride (high-ionic-strength), of bovine nasal cartilage by equilibrium-density-gradient centrifugation, essentially as described by Hascall & Sajdera (1969). 2. The use of different centrifugation times showed that near-equilibrium conditions were reached by 48h for the fractions prepared from the high-ionic-strength extracts. The fraction isolated from the low-ionic-strength extract required a longer centrifugation time to reach equilibrium conditions. 3. The composition of the proteoglycan fractions from the various extracts was compared by analyses of their carbohydrate and amino acid contents. Difference indices were calculated from the amino acid analysis to compare the degree of compositional relationship between the protein components of the proteoglycans. 4. Small compositional differences were found between the proteoglycans isolated from the various high-ionic-strength extracts. The protein content of the fractions from the CaCl(2) extract and the guanidinium chloride extract showed the greatest difference in this respect, although their amino acid analysis was similar. 5. The proteoglycan fraction isolated from the low-ionic-strength extract shows marked differences in composition from the fractions isolated from the high-ionic-strength extracts. Its protein and glucosamine contents were lower whereas its hexuronic acid and galactosamine contents were higher than those of the latter. It also exhibits major differences in its amino acid composition. The glucosamine:galactosamine ratio of the fraction from the low-ionic-strength extract indicates that it may be an almost exclusively chondroitin sulphate-proteoglycan. Its analysis correlates closely with that of a low-molecular-weight proteoglycan isolated from pig laryngeal cartilage by Tsiganos & Muir (1969). 6. The proteoglycan fractions from both the low- and high-ionic-strength extracts migrate as a single band in zone electrophoresis carried out in a sucrose-density gradient at both pH3.0 and pH7.0, although each showed evidence of band widening during the electrophoresis. All the proteoglycan fractions migrated with the same electrophoretic mobility at pH3.0, irrespective of the differences in composition between them. 7. The differences between the proteoglycans from the low- and high-ionic-strength extracts are discussed and the view is advanced that they may be due to association between predominantly chondroitin sulphate-proteoglycans and a keratan sulphate-enriched proteoglycan species.  相似文献   

15.
16.
Bovine nasal cartilage was extracted with 0.5 M LaCl3 and the extract then diluted with nine volumes of water. The resulting precipitate (PLaCl3) contained the proteoglycan subunits, together with minor protein components, but was essentially free from hyaluronic acid. The properties of PLaCl3 were investigated by chemical analysis, electrophoresis, viscometry and analytical ultracentrifugation, and the results compared with those for proteoglycan obtained by caesium chloride density gradient centrifugation of 2 M CaCl2 cartilage extracts. Proteoglycan subunits (A1D1) prepared from PLaCl3 showed identical properties to those obtained from other high ionic strength cartilage extracts.  相似文献   

17.
Hyaluronic acid in cartilage and proteoglycan aggregation   总被引:30,自引:23,他引:7       下载免费PDF全文
1. Dissociation of purified proteoglycan aggregates was shown to release an interacting component of buoyant density higher than that of the glycoprotein-link fraction of Hascall & Sajdera (1969). 2. This component, which produced an increase in hydrodynamic size of proteoglycans on gel chromatography, was isolated by ECTEOLA-cellulose ion-exchange chromatography and identified as hyaluronic acid. 3. The effect of pH of extraction showed that the proportion of proteoglycan aggregates isolated from cartilage was greatest at pH4.5. 4. The proportion of proteoglycans able to interact with hyaluronic acid decreased when extracted above or below pH4.5, whereas the amount of hyaluronic acid extracted appeared constant from pH3.0 to 8.5. 5. Sequential extraction of cartilage with 0.15m-NaCl at neutral pH followed by 4m-guanidinium chloride at pH4.5 was shown to yield predominantly non-aggregated and aggregated proteoglycans respectively. 6. Most of the hyaluronic acid in cartilage, representing about 0.7% of the total uronic acid, was associated with proteoglycan aggregates. 7. The non-aggregated proteoglycans were unable to interact with hyaluronic acid and were of smaller size, lower protein content and lower keratan sulphate content than the disaggregated proteoglycans. Together with differences in amino acid composition this suggested that each type of proteoglycan contained different protein cores.  相似文献   

18.
A low buoyant density fraction (A4) was isolated from human cartilage by CsCl density gradient ultracentrifugation. This fraction contained a hydrodynamically small proteoglycan (Kav, 0.74 on Sepharose CL-2B) that reacted with monoclonal antibody 12/20/1C6 specific for the hyaluronic acid binding region (G1 globe) of the large aggregating high-density proteoglycan isolated from many animal cartilages. Despite the presence of the hyaluronic acid binding region, this small proteoglycan did not form proteoglycan aggregates with hyaluronan, not even in the presence of link protein.  相似文献   

19.
A proteodermatan sulphate was isolated from 0.15 M-NaCl and 0.45 M-NaCl extracts of newborn-calf skin. The proteoglycan was separated from collagen and hyaluronic acid by precipitation with cetylpyridinium chloride and CsCl-density-gradient centrifugation. Further purification was performed by ion-exchange, affinity and molecular-sieve chromatography. The proteoglycan bound to concanavalin A-Sepharose in 1 M-NaCl. It gave a positive reaction with periodic acid/Schiff reagent and contained 8.3% of uronic acid. The dermatan sulphate, the only glycosaminoglycan component, was composed of 74% iduronosylhexosamine units and 26% glucuronosylhexosamine units. The Mr was assessed to be 15000-20000 by gel chromatography. The core protein was found to be a sialoglycoprotein that had O-glycosidic oligosaccharides with N-acetylgalactosamine at the reducing termini. The molar ratio of oligosaccharide chains to dermatan sulphate was approx. 3:1. From these results the proposed structure of proteodermatan sulphate is: one dermatan sulphate chain (average Mr 17500), three O-glycosidic oligosaccharide chains and probably N-glycosidic oligosaccharide chain(s) bound to one core-protein molecule (Mr 55000).  相似文献   

20.
Adult rabbit articular cartilage was labelled in vivo over 48 h with [35S]sulphate and was then incubated in organ culture at pH 7.2. Approx. 65% of the tissue content of [35S]proteoglycan was released into the culture medium during the first 48 h of incubation. The average molecular size of the released proteoglycans, as assessed by fractionation on Sepharose 2B/CL and 4B/Cl, was only slightly smaller than that of the proteoglycans extracted from non-cultured cartilage with 4 M guanidine HCl. The percentage of released proteoglycans and extracted proteoglycans which formed aggregates with hyaluronic acid was approx. 25% and 75%, respectively. The results indicate that proteoglycan degradation in adult articular cartilage is initiated by a limited proteolysis of subunit core protein, with the production of non-aggregating species which diffuse readily from the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号