首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The p21-activated kinase, Shk1, is required for cell viability, establishment and maintenance of cell polarity, and proper mating response in the fission yeast, Schizosaccharomyces pombe. Previous genetic studies suggested that a presumptive protein methyltransferase, Skb1, functions as a positive modulator of Shk1. However, unlike Shk1, Skb1 is not required for viability or mating of S. pombe cells and contributes only modestly to the regulation of cell morphology under normal growth conditions. Here we demonstrate that Skb1 plays a more significant role in regulating cell growth and polarity under conditions of hyperosmotic stress. We provide evidence that the inability of skb1Delta cells to properly maintain cell polarity in hyperosmotic conditions results from inefficient subcellular targeting of F-actin. We show that Skb1 localizes to cell ends, sites of septation, and nuclei of S. pombe cells. Hyperosmotic shock results in substantial delocalization of Skb1 from cell ends and nuclei, as well as stimulation of Skb1 protein methyltransferase activity. Taken together, our results demonstrate a new role for Skb1 as a mediator of hyperosmotic stress response in fission yeast. We show that the protein methyltransferase activity of the human Skb1 homolog, Skb1Hs, is also stimulated by hyperosmotic stress in fission yeast, providing evidence for evolutionary conservation of a role for Skb1-related proteins as mediators of hyperosmotic stress response, as well as mechanisms involved in regulating this novel class of protein methyltransferases.  相似文献   

2.
Kim HW  Yang P  Qyang Y  Lai H  Du H  Henkel JS  Kumar K  Bao S  Liu M  Marcus S 《Molecular cell》2001,7(5):1095-1101
The p21-activated kinase, Shk1, is essential for viability, establishment and maintenance of cell polarity, and proper mating response in the fission yeast, Schizosaccharomyces pombe. Here we describe the characterization of a highly conserved, WD repeat protein, Skb15, which negatively regulates Shk1 in fission yeast. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution.  相似文献   

3.
The p21-activated kinase, Shk1, is required for the proper establishment of cell polarity in the fission yeast, Schizosaccharomyces pombe. We showed recently that loss of the essential Shk1 inhibitor, Skb15, causes significant spindle defects in fission yeast, thus implicating Shk1 as a potential regulator of microtubule dynamics. Here, we show that cells deficient in Shk1 function have malformed interphase microtubules and mitotic microtubule spindles, are hypersensitive to the microtubule-destabilizing drug thiabendazole (TBZ) and cold sensitive for growth. TBZ treatment causes a downregulation of Shk1 kinase activity, which increases rapidly after release of cells from the drug, thus providing a correlation between Shk1 kinase function and active microtubule polymerization. Consistent with a role for Shk1 as a regulator of microtubule dynamics, green fluorescent protein (GFP)-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles, as well as to cell ends and septum-forming regions of fission yeast cells. We show that loss of Tea1, a cell end- and microtubule-localized protein previously implicated as a regulator of microtubule dynamics in fission yeast, exacerbates the growth and microtubule defects resulting from partial loss of Shk1 and that Shk1 localizes to illicit growth tips produced by tea1 mutant cells. Our results demonstrate that Shk1 is required for the proper regulation of microtubule dynamics in fission yeast and implicate Tea1 as a potential Shk1 regulator.  相似文献   

4.
The p21-activated kinase (PAK) homolog Shk1 is essential for cell viability in the fission yeast Schizosaccharomyces pombe. Roles have been established for Shk1 in the regulation of cell morphology, sexual differentiation, and mitosis in S. pombe. In this report, we describe the genetic and molecular characterization of a novel SH3 domain protein, Skb5, identified as a result of a two-hybrid screen for Shk1 interacting proteins. S. pombe cells carrying a deletion of the skb5 gene exhibit no discernible phenotypic defects under normal growth conditions, but when subjected to hypertonic stress, become spheroidal in shape and growth impaired. Both of these defects can be suppressed by overexpression of the Shk1 modulator, Skb1. The growth inhibition that results from overexpression of Shk1 in S. pombe cells is markedly suppressed by a null mutation in the skb5 gene, suggesting that Skb5 contributes positively to the function of Shk1 in vivo. Consistent with this notion, we show that Skb5 stimulates Shk1 catalytic function in S. pombe cells. Furthermore, and perhaps most significantly, we show that bacterially expressed recombinant Skb5 protein directly stimulates the catalytic activity of recombinant Shk1 kinase in vitro. These and additional data described herein demonstrate that Skb5 is a direct activator of Shk1 in fission yeast.  相似文献   

5.
The p21-activated kinase (PAK) homolog, Shk1, is a critical component of a multifunctional Ras/Cdc42/PAK complex required for viability, polarized growth and cell shape, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. Substrate targets of the Shk1 kinase have not previously been described. Here we show that the S. pombe cell polarity factor, Tea1, is directly phosphorylated by Shk1 in vitro. We demonstrate further that Tea1 is phosphorylated in S. pombe cells and that its level of phosphorylation is significantly reduced in cells defective in Shk1 function. Consistent with a role for Tea1 as a potential downstream effector of Shk1, we show that a tea1 null mutation rescues the Shk1 hyperactivity-induced lethal phenotype caused by loss of function of the essential Shk1 inhibitor, Skb15. All phenotypes associated with Skb15 loss, including defects in actin cytoskeletal organization, chromosome segregation, and cytokinesis, are suppressed by tea1 Delta, suggesting that Tea1 is a potential mediator of multiple Shk1 functions. S. pombe cells carrying a weak hypomorphic allele of shk1 together with a tea1 Delta mutation exhibit a cytokinesis defective phenotype that is significantly more severe than that observed in the respective single mutants, providing evidence that Shk1 and Tea1 cooperate to regulate cytokinesis. In addition, we show that S. pombe cells carrying the orb2-34 allele of shk1 exhibit a pattern of monopolar growth similar to that observed in tea1 Delta cells, suggesting that Shk1 and Tea1 may regulate one or more common processes involved in the regulation of polarized cell growth. Taken together, our results strongly implicate Tea1 as a potential substrate-effector of the Shk1 kinase.  相似文献   

6.
V Snell  P Nurse 《The EMBO journal》1994,13(9):2066-2074
We have initiated a study to identify genes regulating cell morphogenesis in the fission yeast Schizosaccharomyces pombe. Five genes have been identified, orb1-orb5, whose mutation gives rise to spherical cells, indicative of an inability to polarize growth. Two further genes have been identified, tea1 and ban1, whose mutant alleles have disturbed patterns of tip growth, leading to T-shaped and curved cells. In fission yeast, sites of cell wall deposition are defined by actin localization, with actin distributions and therefore growth patterns undergoing cell cycle stage-specific reorganization. Studies of double mutants constructed between orb5-19 and various cdc mutants blocked before and after cell division show that orb5 is required for the re-establishment of polar growth following cytokinesis. This indicates that the mutant allele orb5-19 is defective in the reinitiation of polarized growth, even though actin reorganization to the cell tips occurs normally. orb5 encodes a fission yeast homologue of casein kinase II alpha. We propose that this kinase plays a role in the translation of cell polarity into polarized growth, but not in the establishment of polarity itself.  相似文献   

7.
Choi E  Lee K  Song K 《Molecules and cells》2006,22(2):146-153
Cell polarity is critical for the division, differentiation, migration, and signaling of eukaryotic cells. RAX2 of budding yeast encodes a membrane protein localized at the cell cortex that helps maintain the polarity of the bipolar pattern. Here, we designate SPAC6f6.06c as rax2+ of Schizosaccharomyces pombe, based on its sequence homology with RAX2, and examine its function in cell polarity. S. pombe rax2+ is not essential, but Deltarax2 cells are slightly smaller and grow slower than wild type cells. During vegetative growth or arrest at G1 by mutation of cdc10, deletion of rax2+ increases the number of cells failing old end growth just after division. In addition, this failure of old end growth is dramatically increased in Deltatea1Deltarax2, pointing to genetic interaction of rax2+ with tea1+. Deltarax2 cells contain normal actin and microtubule cytoskeletons, but lack actin cables, and the polarity factor for3p is not properly localized at the growing tip. In Deltarax2 cells, and endogenous rax2p is localized at the cell cortex of growing cell tips in an actin- and microtubule-dependent manner. However, Deltarax2 cells show no defects in cell polarity during shmoo formation and conjugation. Taken together, these observations suggest that rax2p controls the cell polarity of fission yeast during vegetative growth by regulating for3p localization.  相似文献   

8.
Liu G  Young D 《PloS one》2012,7(5):e37221
The Ndr-related Orb6 kinase is a key regulator of polarized cell growth in fission yeast, however the mechanism of Orb6 activation is unclear. Activation of other Ndr kinases involves both autophosphorylation and phosphorylation by an upstream kinase. Previous reports suggest that the Nak1 kinase functions upstream from Orb6. Supporting this model, we show that HA-Orb6 overexpression partially restored cell polarity in nak1 ts cells. We also demonstrated by coimmunoprecipitation and in vitro binding assays that Nak1 and Orb6 physically interact, and that the Nak1 C-terminal region is required for Nak1/Orb6 complex formation in vivo. However, results from in vitro kinase assays did not show phosphorylation of recombinant Orb6 by HA-Nak1, suggesting that Orb6 activation may not involve direct phosphorylation by Nak1. To investigate the role of Orb6 phosphorylation and activity, we substituted Ala at the ATP-binding and conserved phosphorylation sites. Overexpression of kinase-dead HA-Orb6(K122A) in wild-type cells resulted in a loss of cell polarity, suggesting that it has a dominant-negative effect, and it failed to rescue the polarity defect of nak1 or orb6 ts mutants. Recombinant GST-Orb6(S291A) did not autophosphorylate in vitro suggesting that Ser291 is the primary autophosphorylation site. HA-Orb6(S291A) overexpression only partially rescued the orb6 polarity defect and failed to rescue the nak1 defect, suggesting that autophosphorylation is important for Orb6 function. GST-Orb6(T456A) autophosphorylated in vitro, indicating that the conserved phosphorylation site at Thr456 is not essential for kinase activity. However, HA-Orb6(T456A) overexpression had similar effects as overexpressing kinase-dead HA-Orb6(K122A), suggesting that Thr456 is essential for Orb6 function in vivo. Also, we found that both phosphorylation site mutations impaired the ability of Myc-Nak1 to coimmunoprecipitate with HA-Orb6. Together, our results suggest a model whereby autophosphorylation of Ser291 and phosphorylation of Thr456 by an upstream kinase promote Nak1/Orb6 complex formation and Orb6 activation.  相似文献   

9.
The regulation of cell polarity in the fission yeast Schizosaccharomyces pombe is apparent in the restriction of extensile growth to the two ends of a cylindrically shaped cell, and in a specific transition - termed 'new-end take-off' (NETO) - between monopolar and bipolar growth mid-way through the cell cycle [1]. Several genes have been identified that affect one or more aspects of cell polarity (reviewed in [2] [3]), and the molecular pathways regulating cell polarity in fission yeast appear to be conserved among eukaryotes [3] [4] [5] [6] [7] [8] [9], but it is less clear how the proteins involved organize polarity at the level of the entire cell. Here, we describe novel cytological markers of cell polarity in fission yeast and their unusual localization in the monopolar growth mutant orb2-34, which carries a non-lethal mutation in the essential gene shk1(+)/pak1(+)/orb2(+), which encodes a p21-activated kinase (PAK) family member [8] [9] [10] [11] [12]. Our results suggest that, in contrast to other monopolar-growing mutants, the monopolar phenotype of the orb2-34 mutant might not be due to a defect in activating end growth per se, but rather reflects a failure of one of the cell ends to maintain the molecular properties that identify an end. Thus, one role of the Shk1/Pak1 kinase in vivo might be to contribute to how a cell recognizes its ends as sites for growth.  相似文献   

10.
The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end-binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3Deltabud6Deltatea1Delta triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.  相似文献   

11.
Chemical gradients can generate pattern formation in biological systems. In the fission yeast Schizosaccharomyces pombe, a cortical gradient of pom1p (a DYRK-type protein kinase) functions to position sites of cytokinesis and cell polarity and to control cell length. Here, using quantitative imaging, fluorescence correlation spectroscopy, and mathematical modeling, we study how its gradient distribution is formed. Pom1p gradients exhibit large cell-to-cell variability, as well as dynamic fluctuations in each individual gradient. Our data lead to a two-state model for gradient formation in which pom1p molecules associate with the plasma membrane at cell tips and then diffuse on the membrane while aggregating into and fragmenting from clusters, before disassociating from the membrane. In contrast to a classical one-component gradient, this two-state gradient buffers against cell-to-cell variations in protein concentration. This buffering mechanism, together with time averaging to reduce intrinsic noise, allows the pom1p gradient to specify positional information in a robust manner.  相似文献   

12.
Schizosaccharomyces pombe cdc42(+) regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1(+) increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1(+) causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1(+) deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1delta scd1delta is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1(+) or scd1(+) causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.  相似文献   

13.
Cell morphogenesis is of fundamental significance in all eukaryotes for development, differentiation, and cell proliferation. In fission yeast, Drosophila Furry-like Mor2 plays an essential role in cell morphogenesis in concert with the NDR/Tricornered kinase Orb6. Mutations of these genes result in the loss of cell polarity. Here we show that the conserved proteins, MO25-like Pmo25, GC kinase Nak1, Mor2, and Orb6, constitute a morphogenesis network that is important for polarity control and cell separation. Intriguingly, Pmo25 was localized at the mitotic spindle pole bodies (SPBs) and then underwent translocation to the dividing medial region upon cytokinesis. Pmo25 formed a complex with Nak1 and was required for both the localization and kinase activity of Nak1. Pmo25 and Nak1 in turn were essential for Orb6 kinase activity. Further, the Pmo25 localization at the SPBs and the Nak1-Orb6 kinase activities during interphase were under the control of the Cdc7 and Sid1 kinases in the septation initiation network (SIN), suggesting a functional linkage between SIN and the network for cell morphogenesis/separation following cytokinesis.  相似文献   

14.
Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions between cell polarity proteins and the Cdr1-Cdr2 module might underlie the coordination of cell growth and division. To identify the molecular connections between Cdr1/2 and cell polarity, we performed a comprehensive pairwise yeast two-hybrid screen. From the resulting interaction network, we found that the protein Skb1 interacted with both Cdr1 and the Cdr1 inhibitory target Wee1. Skb1 inhibited mitotic entry through negative regulation of Cdr1 and localized to both the cytoplasm and a novel set of cortical nodes. Skb1 nodes were distinct structures from Cdr1/2 nodes, and artificial targeting of Skb1 to Cdr1/2 nodes delayed entry into mitosis. We propose that the formation of distinct node structures in the cell cortex controls signaling pathways to link cell growth and division.  相似文献   

15.
BACKGROUND: In many cell types, microtubules are thought to direct the spatial distribution of F-actin in cell polarity. Schizosaccharomyces pombe cells exhibit a regulated program of polarized cell growth: after cell division, they grow first in a monopolar manner at the old end, and in G2 phase, initiate growth at the previous cell division site (the new end). The role of microtubule ends in cell polarity is highlighted by the finding that the cell polarity factor, tea1p, is present on microtubule plus ends and cell tips [1]. RESULTS: Here, we characterize S. pombe bud6p/fat1p, a homolog of S. cerevisiae Bud6/Aip3. bud6Delta mutant cells have a specific defect in the efficient initiation of growth at the new end and like tea1Delta cells, form T-shaped cells in a cdc11 background. Bud6-GFP localizes to both cell tips and the cytokinesis ring. Maintenance of cell tip localization is dependent upon actin but not microtubules. Bud6-GFP localization is tea1p dependent, and tea1p localization is not bud6p dependent. tea1Delta and bud6Delta cells generally grow in a monopolar manner but exhibit different growth patterns. tea1(Delta)bud6Delta mutants resemble tea1Delta mutants. Tea1p and bud6p coimmunoprecipitate and comigrate in large complexes. CONCLUSIONS: Our studies show that tea1p (a microtubule end-associated factor) and bud6p (an actin-associated factor) function in a common pathway, with bud6p downstream of tea1p. To our knowledge, bud6p is the first protein shown to interact physically with tea1p. These studies delineate a pathway for how microtubule plus ends function to polarize the actin cytoskeleton through actin-associated polarity factors.  相似文献   

16.
The Ste20/p21-activated kinase homolog Shk1 is essential for viability and required for normal morphology, mating, and cell cycle control in the fission yeast Schizosaccharomyces pombe. Shk1 is regulated by the p21 G protein Cdc42, which has been shown to form a complex with the SH3 domain protein Scd2 (also called Ral3). In this study, we investigated whether Scd2 plays a role in regulating Shk1 function. We found that recombinant Scd2 and Shk1 interact directly in vitro and that they interact in vivo, as determined by the two-hybrid assay and genetic analyses in fission yeast. The second of two N-terminal SH3 domains of Scd2 is both necessary and sufficient for interaction with Shk1. While full-length Scd2 interacted with only the R1 N-terminal regulatory subdomain of Shk1, a C-terminal deletion mutant of Scd2 interacted with both the R1 and R3 subdomains of Shk1, suggesting that the non-SH3 C-terminal domain of Scd2 may be involved in defining specificity in SH3 binding domain recognition. Overexpression of Scd2 stimulated the autophosphorylation activity of wild-type Shk1 in fission yeast but, consistent with results of genetic analyses, did not stimulate the activity of a Shk1 protein lacking the R1 subdomain. Results of additional two-hybrid experiments suggest that Scd2 may stimulate Shk1 catalytic function, at least in part, by positively modulating protein-protein interaction between Cdc42 and Shk1. We propose that Scd2 functions as an organizing center, or scaffold, for the Cdc42 complex in fission yeast and that it acts in concert with Cdc42 to positively regulate Shk1 function.  相似文献   

17.
Aip3p is an actin-interacting protein that regulates cell polarity in budding yeast. The Schizosaccharomyces pombe-sequencing project recently led to the identification of a homologue of Aip3p that we have named spAip3p. Our results confirm that spAip3p is a true functional homologue of Aip3p. When expressed in budding yeast, spAip3p localizes similarly to Aip3p during the cell cycle and complements the cell polarity defects of an aip3Delta strain. Two-hybrid analysis shows that spAip3p interacts with actin similarly to Aip3p. In fission yeast, spAip3p localizes to both cell ends during interphase and later organizes into two rings at the site of cytokinesis. spAip3p localization to cell ends is dependent on microtubule cytoskeleton, its localization to the cell middle is dependent on actin cytoskeleton, and both patterns of localization require an operative secretory pathway. Overexpression of spAip3p disrupts the actin cytoskeleton and cell polarity, leading to morphologically aberrant cells. Fission yeast, which normally rely on the microtubule cytoskeleton to establish their polarity axis, can use the actin cytoskeleton in the absence of microtubule function to establish a new polarity axis, leading to the formation of branched cells. spAip3p localizes to, and is required for, branch formation, confirming its role in actin-directed polarized cell growth in both Schizosaccharomyces pombe and Saccharomyces cerevisiae.  相似文献   

18.
Ribosome biogenesis is driven by a large number of preribosomal factors that associate with and dissociate from the preribosomal particles along the maturation pathway. We have previously shown that budding yeast Mak11, whose homologues in other eukaryotes were described as modulating a p21-activated protein kinase function, accumulates in Rlp24-associated pre-60S complexes when their maturation is impeded in Saccharomyces cerevisiae. The functional inactivation of WD40 repeat protein Mak11 interfered with the 60S rRNA maturation, led to a cell cycle delay in G(1), and blocked green fluorescent protein-tagged Rpl25 in the nucleoli of yeast cells, indicating an early role of Mak11 in ribosome assembly. Surprisingly, Mak11 inactivation also led to a dramatic destabilization of Rlp24. The suppression of the thermosensitive phenotype of a mak11 mutant by RLP24 overexpression and a direct in vitro interaction between Rlp24 and Mak11 suggest that Mak11 acts as an Rlp24 cofactor during early steps of 60S ribosomal subunit assembly. Moreover, we found that Skb15, the Mak11 homologue in Schizosaccharomyces pombe, also associated with preribosomes and affected 60S biogenesis in fission yeast. It is thus likely that the previously observed phenotypes for MAK11 homologues in other eukaryotes are secondary to the main function of these proteins in ribosome formation.  相似文献   

19.
Polarized morphogenesis is achieved by targeting or inhibiting growth in distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along nongrowing cell sides. We previously identified a set of 50–100 megadalton-sized node structures along the sides of fission yeast cells that contained the interacting proteins Skb1 and Slf1. Here, we show that Skb1–Slf1 nodes contain the syntaxin-like soluble N-ethylmaleimide-sensitive factor attachment protein receptor Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips, where it likely promotes exocytosis and growth, but is sequestered in Skb1–Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly or inhibit Psy1 localization to nodes lead to aberrant exocytosis at cell sides and increased cell width. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at nongrowing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.  相似文献   

20.
One fundamental problem in cytokinesis is how the plane of cell division is established. In this review, we describe our studies on searching for "signals" that position the cell division plane, using fission yeast Schizosaccharomyces pombe. First, we take a genetic approach to determine how the nucleus may position the contractile ring in fission yeast. mid1p appears to link the position of the ring with the nuclear position, as it is required for proper placement of the contractile ring and is localized in a band at the cell surface overlying the nucleus. Second, we study how microtubules may function in the establishment of cell polarity at the cell tips. tea1p may be deposited on the cell surface by microtubules and function to recruit proteins involved in making actin structures. These studies suggest how microtubules may direct the assembly of the contractile ring in animal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号