首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of ethanol by isolated liver cells from starved rats is limited by the rate of removal of reducing equivalents generated in the cytosol by alcohol dehydrogenase. Evidence is presented suggesting that, in these cells, transfer of reducing equivalents from the cytosol to the mitochondria is regulated by the intracellular concentrations of the intermediates of the malate-aspartate and glycerol 3-phosphate cycles, as well as by flux through the respiratory chain. In liver cells isolated from fed rats, the availability of substrate increased the cell content of intermediates of the hydrogen-transfer cycles, and enhanced ethanol uptake. Under these conditions, ethanol consumption is limited by the availability of ADP for oxidative phosphorylation.  相似文献   

2.
Six adult, female, cynomolgus monkeys were fasted for 64 hr and then continuously infused with [6-3H]glucose to determine the rates of glucose turnover and clearance while they were also being infused with ethanol (110 mumol/min/kg), 1,3-butanediol (110 mumol/min/kg), fructose (30 mumol/min/kg) or ethanol plus fructose (110 and 30 mumol/min/kg) respectively. Both ethanol and 1,3-butanediol infusions decreased the glucose turnover rate (the steady-state input-output rate from the plasma glucose pool) and the plasma glucose concentration by halving the glucose production rate. In contrast, fructose infusions increased the glucose turnover rate and glucose concentration by increasing the glucose production rate by 20%. The plasma clearance rate of glucose was lowest when the animals were infused with ethanol plus fructose; this suggests that acetate from ethanol oxidation may have a glucose-sparing effect if normoglycemia is maintained.  相似文献   

3.
A study was made of factors regulating the oxidation of ethanol in liver cells isolated from fed and fasted rats. The rate of ethanol oxidation was greater in liver cells from fed rats than from fasted rats. Inhibitors of the malate-aspartate shuttle decreased the rate of ethanol oxidation, suggesting that this shuttle contributes to the reoxidation of cytosolic NADH produced during the oxidation of ethanol. The greater inhibition of ethanol oxidation by antimycin than by rotenone suggests that the α-glycerophosphate shuttle also plays an important role in transporting reducing equivalents. The components of the malate-aspartate and α-glycerophosphate shuttles stimulated ethanol oxidation to a greater extent in liver cells from fasted rats than those from fed rats, suggesting that in the fasted state, ethanol oxidation is regulated by the intracellular concentrations of substrate shuttle components which transfer reducing equivalents into the mitochondria. Therefore, uncoupling agents, which stimulate oxygen consumption, do not stimulate ethanol oxidation, and concentrations of antimycin which depress oxygen uptake are much less effective in decreasing ethanol oxidation. By contrast, in liver cells from fed rats, the rate of ethanol oxidation was increased by uncoupling agents. Such stimulation was not observed when cells were prepared in the absence of albumin, probably due to leakage of shuttle substrates which leads to abnormally low intracellular levels. Indeed, when the shuttle substrates were added back to these preparations, uncouplers were effective in stimulating the rate of ethanol oxidation beyond the stimulation produced by the shuttle substrates alone. Thus, under conditions of sufficient intracellular levels of the intermediates of the substrate shuttles, ethanol oxidation is regulated by the capacity of the mitochondrial respiratory chain to reoxidize reducing equivalents generated by the alcohol dehydrogenase reaction.  相似文献   

4.
The metabolism of [2-3H]lactate was studied in isolated hepatocytes from fed and starved rats metabolizing ethanol and lactate in the absence and presence of fructose. The yields of 3H in ethanol, water, glucose and glycerol were determined. The rate of ethanol oxidation (3 mumol/min per g wet wt.) was the same for fed and starved rats with and without fructose. From the detritiation of labelled lactate and the labelling pattern of ethanol and glucose, we calculated the rate of reoxidation of NADH catalysed by lactate dehydrogenase, alcohol dehydrogenase and triosephosphate dehydrogenase. The calculated flux of reducing equivalents from NADH to pyruvate was of the same order of magnitude as previously found with [3H]ethanol or [3H]xylitol as the labelled substrate [Vind & Grunnet (1982) Biochim. Biophys. Acta 720, 295-302]. The results suggest that the cytoplasm can be regarded as a single compartment with respect to NAD(H). The rate of reduction of acetaldehyde and pyruvate was correlated with the concentration of these metabolites and NADH, and was highest in fed rats and during fructose metabolism. The rate of reoxidation of NADH catalysed by lactate dehydrogenase was only a few per cent of the maximal activity of the enzymes, but the rate of reoxidation of NADH catalysed by alcohol dehydrogenase was equal to or higher than the maximal activity as measured in vitro, suggesting that the dissociation of enzyme-bound NAD+ as well as NADH may be rate-limiting steps in the alcohol dehydrogenase reaction.  相似文献   

5.
Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.  相似文献   

6.
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal‐fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse‐chase LC‐MS‐based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine‐derived fluxes: Oxidation of glucose‐derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation.  相似文献   

7.
1. The fatty acid synthesis in isolated liver cells from fed rats was studied with tritiated water as the radioactive precursor. The cells incorporated 3H20 at a rate of 1.26 mumol per min per g packed cells. 2. Addition of ethanol caused a 20% decrease in the incorporation of tritium into fatty acids. The decrease was correlated to the increase in the NAD-redox level. Probably, the decreased tritium incorporation into fatty acids during ethanol metabolism is due to a decrease in the specific activity of the NADPH used for the synthesis of fatty acids, rather than to a real inhibition of the fatty acid synthesis. 3. Ethanol oxidation via NADPH-consuming pathways and ethanol per se at a concentration of 80 mM had no effect upon the incorporation of tritium into fatty acids. 4. Fructose in a concentration of 15 mM inhibited the fatty acid synthesis by 75%, and this inhibition was further augmented by ethanol. 5. The ioslated rat liver cells oxidized ethanol at a rate of 2.72, 2.93 and 3.48 mumol per min per g packed cells at 5, 20 and 80 mM ethanol, respectively. Fructose had no effect upon ethanol oxidation neither at low nor at high concentrations of ethanol. 6. Ethanol oxidation via the non alcohol dehydrogenase pathway(s) may involve a transfer of reducing equivalents from mitochondrial NADH to cyctosolic NADP+ as judged from measurements of metabolite levels. This conclusion is supported by determinations of 14C yield in glucose from [1-14C] ethanol, and the results are taken as evidence for the presence of hydrogen shuttle activity during metabolism of ethanol, catalyzed by the NAD-dependent alcohol dehydrogenase. A metabolic scheme is proposed to account for the observed changes at low and high concentrations of ethanol.  相似文献   

8.
Regulation of ethanol metabolism in the rat   总被引:2,自引:0,他引:2  
The purpose of these experiments was to examine the factors which regulate ethanol metabolism in vivo. Since the major pathway for ethanol removal requires flux through hepatic alcohol dehydrogenase, the activity of this enzyme was measured and found to be 2.9 mumol/(min X g liver). Ethanol disappearance was linear for over 120 min in vivo and the blood ethanol fell 0.1 mM/min; this is equivalent to removing 20 mumol ethanol/min and would require that flux through alcohol dehydrogenase be about 60% of its measured maximum velocity. To test whether ethanol metabolism was limited by the rate of removal of one of the end products (NADH) of alcohol dehydrogenase, fluoropyruvate was infused to reoxidize hepatic NADH and to prevent NADH generation via flux through pyruvate dehydrogenase. There was no change in the rate of ethanol clearance when fluoropyruvate was metabolized. Furthermore, enhancing endogenous hepatic NADH oxidation by increasing the rate of urea synthesis (converting ammonium bicarbonate to urea) did not augment the steady-state rate of ethanol oxidation. Hence, transport of cytoplasmic reducing power from NADH into the mitochondria was not rate limiting for ethanol oxidation. In contrast, ethanol oxidation at the earliest time periods could be augmented by increasing hepatic urea synthesis.  相似文献   

9.
AS-30D hepatoma cells, a highly oxidative and fast-growing tumor line, showed glucose-induced and fructose-induced inhibition of oxidative phosphorylation (the Crabtree effect) of 54% and 34%, respectively. To advance the understanding of the underlying mechanism of this process, the effect of 5 mM glucose or 10 mM fructose on the intracellular concentration of several metabolites was determined. The addition of glucose or fructose lowered intracellular Pi (40%), and ATP (53%) concentrations, and decreased cytosolic pH (from 7.2 to 6.8). Glucose and fructose increased the content of AMP (30%), glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate (15, 13 and 50 times, respectively). The cytosolic concentrations of Ca2+ and Mg2+ were not modified. The addition of galactose or glycerol did not modify the concentrations of the metabolites. Mitochondria isolated from AS-30D cells, incubated in media with low Pi (0.6 mM) at pH 6.8, exhibited a 40% inhibition of oxidative phosphorylation. The data suggest that the Crabtree effect is the result of several small metabolic changes promoted by addition of exogenous glucose or fructose.  相似文献   

10.
The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs.  相似文献   

11.
A direct linear relationship between the rate of oxygen consumption and ATP content in starved Zymomonas mobilis cells was observed in the presence of ethanol (0.056–1.12 mM) as the substrate. Both the rate of oxygen consumption and the ATP content were significantly reduced by the exogenously added plant growth substance N6-(2-isopentenyl)adenine (i6Ade), directly proportional to the concentration (0.125–0.5 mM) of i6Ade in the incubation medium. The results obtained are consistent with the current view of ATP synthesis by oxidative phosphorylation in non-growing Z. mobilis cells and gives evidence that i6Ade can be used as a tool to affect in vivo the alcohol dehydrogenase reaction, which provides reducing equivalents for ethanol-dependent aerobic energy generation.  相似文献   

12.
To study possible factors in the pathogenesis of the ethanol-induced fatty liver, we investigated the effect of chronic ethanol consumption on the metabolism of fatty acids by isolated hepatic mitochondria. Chronic ethanol consumption resulted in decreased fatty acid oxidation, as evidenced by a reduction in oxygen uptake and CO2 production associated with the oxidation of fatty acids. The State 3 rate of oxygen uptake was depressed to a greater extent than the State 4 or the uncoupler-stimulated rate; the respiratory control ratio was also decreased. Therefore, one site of action of chronic ethanol feeding is on oxidative phosphorylation. The reduction in fatty acid oxidation, in general, is not due to an effect on the activation or translocation of fatty acids into the mitochondria. There was no effect by ethanol feeding on the activity of palmitoyl coenzyme A synthetase, whereas carnitine palmitoyltransferase activity was increased. The use of an artificial system (formazan production) to study beta oxidation in the absence of the electron transport chain is described. In the presence of fluorocitrate, which inhibits citric acid cycle activity, ketogenesis and formazan production were increased by chronic ethanol consumption. Thus beta oxidation to the level of acetyl-CoA is not impaired by chronic ethanol consumption. Total oxidation of fatty acids to CO2 is depressed by chronic ethanol intoxication because of effects on oxidative phosphorylation or the citric acid cycle (or both). Neither nutritional deficiency, cofactor depletion, nor the presence of ethanol in vitro explains these effects. Several of the effects of chronic ethanol consumption on fatty acid oxidation are mimicked by acetaldehyde and acetate, products of ethanol oxidation. Chronic ethanol consumption leads to persistent impairment of mitochondrial oxidation of fatty acids to CO2. However, oxidation of fatty acids to acetyl-CoA is not decreased by chronic ethanol consumption.  相似文献   

13.
Hepatic metabolism of ethanol to acetaldehyde by the alcohol dehydrogenase pathway is associated with the generation of reducing equivalents as NADH. Conversely, reducing equivalents are consumed when ethanol oxidation is catalyzed by the NADPH dependent microsomal ethanol oxidizing system. Since the major fraction of ethanol metabolism proceeds via alcohol dehydrogenase and since the oxidation of acetaldehyde also generates NADH, an excess of reducing equivalents is produced. This explains a variety of effects following acute ethanol administration, including hyperlactacidemia, hyperuricemia, enhanced lipogenesis and depressed lipid oxidation. To the extent that ethanol is oxidized by the alternate microsomal ethanol oxidizing system pathway, it slows the metabolism of other microsomal substrates. Following chronic ethanol consumption, adaptive microsomal changes prevail, which include enhanced ethanol and drug metabolism, and increased lipoprotein production. Severe hepatic lesions (alcoholic hepatitis and cirrhosis) develop after prolonged ethanol consumption in baboons. These injurious alterations are not prevented by nutritionally adequate diets and can therefore be ascribed to ethanol rather than to dietary inadequacy.  相似文献   

14.
N Krarup  C Olsen 《Life sciences》1974,15(1):65-72
The system transporting reducing equivalents across the mitochondrial membrane was investigated by following the flux of reducing equivalents from cytosol to mitochondriae, estimated from the ethanol elimination, and the redox potentials on both sides of the mitochondrial membrane, estimated from the lactate/pyruvate and β-hydroxybutyrate/acetoacetate ratios in the effluent medium. The power of the transport system was calculated to be 1.8×10?3 cal/min/g liver (wet wt.), which was about 1% of the metabolic rate. Uncoupling by 2,4 dinitrophenol increased the oxygen consumption 30%, but the ethanol elimination decreased despite a fall in the redox potential gradient, resulting in a 50% decrease in power of the transport system. This indicates that the transport of reducing equivalents from cytosol to mitochondriae is energy dependent.  相似文献   

15.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

16.
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase.  相似文献   

17.
Fructose 1-phosphate kinase was partially purified from Clostridium difficile and used to develop specific assays of fructose 1-phosphate and fructose. The concentration of fructose 1-phosphate was below the detection limit of the assay (25 pmol/mg protein) in hepatocytes incubated in the presence of glucose as sole carbohydrate. Addition of fructose (0.05-1 mM) caused a concentration-dependent and transient increase in the fructose 1-phosphate content. Glucagon (1 microM) and ethanol (10 mM) caused a severalfold decrease in the concentration of fructose 1-phosphate in cells incubated with fructose, whereas the addition of 0.1 microM vasopressin or 10 mM glycerone, or raising the concentration of glucose from 5 mM to 20 mM had the opposite effect. All these agents caused changes in the concentration of triose phosphates that almost paralleled those of the fructose 1-phosphate concentration. Sorbitol had a similar effect to fructose in causing the formation of fructose 1-phosphate. D-Glyceraldehyde was much less potent in this respect than the ketose and its effect disappeared earlier. The effect of D-glyceraldehyde was reinforced by an increase in the glucose concentration and decreased by glucagon. Both fructose and D-glyceraldehyde stimulated the phosphorylation of glucose as estimated by the release of 3H2O from [2-3H]glucose, but the triose was less potent in this respect than fructose and its effect disappeared earlier. Glucagon and ethanol antagonised the effect of low concentrations of fructose or D-glyceraldehyde on the detritiation of glucose. These results support the proposal that fructose 1-phosphate mediates the effects of fructose, D-glyceraldehyde and sorbitol by relieving the inhibition exerted on glucokinase by a regulatory protein.  相似文献   

18.
The oxidation of ethanol by the liver produces acetaldehyde, which is a highly reactive compound. Low concentrations of acetaldehyde inhibited mitochondrial respiration with glutamate, β-hydroxybutyrate, or α-ketoglutarate as substrates, but not with succinate or ascorbate. High concentrations led to respiratory inhibition with all substrates. Inhibition of succinate- and ascorbate-linked oxidation by acetaldehyde correlates with the inhibition of the activities of succinic dehydrogenase and cytochrome oxidase. A site more sensitive to acetaldehyde appears to be localized prior to the NADH-ubiquinone oxidoreductase segment of the respiratory chain. Acetaldehyde inhibits energy production by the mitochondria, as evidenced by its inhibition of respiratory control, oxidative phosphorylation, the rate of phosphorylation, and the ATP-32P exchange reaction. Energy utilization is also inhibited, in view of the decrease in both substrate- and ATP-supported Ca2+ uptake, and the reduction in Ca2+-stimulated oxygen uptake and ATPase activity. The malate-aspartate, α-glycerophosphate, and fatty acid shuttles for the transfer of reducing equivalents, and oxidation by mitochondria, were highly sensitive to acetaldehyde. Acetaldehyde also inhibited the uptake of anions which participate in the shuttles. The inhibition of the shuttles is apparently caused by interference with NAD+-dependent state 3 respiration and anion entry and efflux. Ethanol (6–80 mm) had no significant effect on oxygen consumption, anion uptake, or mitochondrial energy production and utilization. The data suggest that acetaldehyde may be implicated in some of the toxic effects caused by chronic ethanol consumption.  相似文献   

19.
The specific growth rate of the ethanol producing bacterium Zymomonas mobilis was 25–40% lower in the presence of oxygen than under anaerobic conditions, provided the cultures were supplied with a low substrate concentration (20 g glucose/l). However, the molar growth yield of these cultures was not influenced by oxygen. With washed cell suspensions, an oxygen consumption could be initiated by the addition of either glucose, fructose, or ethanol. Cell extracts catalyzed the oxidation of NADH with oxygen at a molar ratio of 2:1. Further experiments showed that this NADH oxidase is located in the cell membrane. The specific oxygen consumption rates of cell suspensions correlated with the intracellular NADH oxidizing activities; both levels decreased with increasing concentrations of the fermentation end-product ethanol. The addition of 5 mM NaCN completely inhibited both the intracellular oxygen reduction and also the oxygen consumption of whole cells. Both catalase and superoxide dismutase were present even in anaerobically grown cells. Aeration seemed to have little effect on the level of catalase, but the superoxide dismutase activity was 5-fold higher in cells grown aerobically. Under aerobic conditions considerable amounts of acetaldehyde and acetic acid were formed in addition to the normal fermentation products, ethanol and carbon dioxide.Dedicated to Professor Dr. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

20.
The thermophilic bacterium, Moorella sp. HUC22-1, newly isolated from a mud sample, produced ethanol from H(2) and CO(2) during growth at 55 degrees C. In batch cultures in serum bottles, 1.5 mM ethanol was produced from 270 mM H(2) and 130 mM CO(2) after 156 h, whereas less than 1 mM ethanol was produced from 23 mM fructose after 33 h. Alcohol dehydrogenase and acetaldehyde dehydrogenase activities were higher in cells grown with H(2) and CO(2) than those grown with fructose. The NADH/NAD(+) and NADPH/NADP(+) ratios in cells grown with H(2) and CO(2) were also higher than those in cells grown with fructose. When the culture pH was controlled at 5 with H(2) and CO(2) in a fermenter, ethanol production was 3.7-fold higher than that in a pH-uncontrolled culture after 220 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号