首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties and effects of two plant resistance suppressors (1,3--1,6--glucan and a pentasaccharide of xyloglucan origin) involved in the pathosystem of potato (Solanum tuberosum) and the causal agent of blight (Phytophthora infestans(Mont) de Bary) were compared. The microbial 1,3--1,6--glucan suppressed the defense response over a narrow concentration range (10–2M), whereas the plant pentasaccharide had a broad range of effective concentrations (10–12to 10–6M). In the pathosystem of potato and the causal agent of late blight, the -glucan caused a local and race-specific suppressor effect on the plant host defense response. In contrast, the pentasaccharide caused both local and systemic suppression of potato resistance and the presence of terminal fucosyl residue in the xyloglucan oligosaccharine played a decisive role in its effect. The recognition of both suppressors by potato cell membrane sites is discussed.  相似文献   

2.
The multiple washing of the wound surface of potato tubers by water adversely affected the protective properties of wound periderm. Immune inhibitor β-1,3-β-1,6 glucan had a property of local effect and inhibited the process of wound healing. The pentasaccharide of xyloglucan caused necrosis of potato tuber tissue and prevented the wound reparation process.  相似文献   

3.
Methyl ester of jasmonic acid (Me-JA) influences the induced resistance of potato tubers to late blight caused by Phytophthora infestans. Treatment of potato tuber disk surface with Me-JA solution or exposure to an atmosphere containing Me-JA vapors (10(-6)-10(-5) M) increased the rate of rishitin biosynthesis induced by arachidonic acid or P. infestans. Methyl jasmonate increased the sensitivity of potato tissue to arachidonic acid. As a result, in the presence of Me-JA, the protective properties of arachidonic acid were observed at lower concentrations than in the absence of Me-JA. In addition, Me-JA reduced the adverse effects of lipoxygenase inhibitors (salicylhydroxamic acid and esculetin) on the induced resistance of potato tubers to late blight. Therefore, the synergistic interaction of Me-JA and biogenic elicitors can be regarded as part of a mechanism of potato defense against diseases.  相似文献   

4.
The mechanisms of induced resistance and susceptibility of potato (Solanum tuberosum L.) tubers to late blight agent (Phytophthora infestans Mont de Bary) were studied using an elicitor chitosan and an immunosuppressor laminarin. It was elucidated that treatment of disks from potato tubers with chitosan resulted in salicyclic acid (SA) accumulation due to activation of benzoate-2-hydroxylase and hydrolysis of SA conjugates. Such SA accumulation in potato tissues inhibited one of the antioxidant enzymes, catalase, inducing an oxidative burst and resistance development. The mechanisms of induced susceptibility to the late blight causal agent were studied using an unspecific immunosuppressor, laminarin, an analogue of natural specific suppressor of potato immune responses, β-1,3,β-1,6-glucan. It was established that the development of immunosuppression in tissues treated with laminarin did not affect the SA level in tissues. However, catalase sensitivity to SA reduced in laminarin-treated tissues, and the enzyme activity increased. In its turn, this might result in the reduced level of hydrogen peroxide in the cells and, as a sequence, in the increased potato susceptibility to late blight.  相似文献   

5.
A novel extracellular low-molecular-weight polysaccharide was detected as a contaminant within extracellular cyclic beta-1,6-beta-1,3-glucan preparations from Bradyrhizobium japonicum USDA 110 cultures. Compositional analysis, methylation analysis, and nuclear magnetic resonance analysis revealed that this low-molecular-weight polysaccharide was composed of the same pentasaccharide repeating unit previously described for the high-molecular-weight form of the exopolysaccharide (EPS) synthesized by B. japonicum strains. Mass spectrometry analysis indicated that the size of this low-molecular-weight form of EPS was consistent with a dimeric form of the pentasaccharide repeating unit.  相似文献   

6.
Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.  相似文献   

7.
Methyl ester of jasmonic acid (Me-JA) influences the induced resistance of potato tubers to late blight caused byPhytophthora infestans. Treatment of potato tuber disk surfaces with Me-JA solution or exposure to an atmosphere containing Me-JA vapors (10−6–10−5 M) increased the rate of rishitin biosynthesis induced by arachidonic acid orP. infestans. Methyl jasmonate increased the sensitivity of potato tissue to arachidonic acid. As a result, in the presence of Me-JA, the protective properties of arachidonic acid were observed at lower concentrations than in the absence of Me-JA. In addition, Me-JA reduced the adverse effects of lipoxygenase inhibitors (salicylhydroxamic acid and esculetin) on the induced resistance of potato tubers to late blight. Therefore, the synergistic interaction of Me-JA and biogenic elicitors can be regarded as part of a mechanism of potato defense against diseases.  相似文献   

8.
beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan.  相似文献   

9.
Infiltration of potato leaves with the phytopathogenic bacteria Pseudomonas syringae pv. maculicola induces local and systemic defense gene expression as well as increased resistance against subsequent pathogen attacks. By cDNA-AFLP a gene was identified that is activated locally in potato leaves in response to bacterial infiltration and after infection with Phytophthora infestans, the causal agent of late blight disease. The encoded protein has high homology to a phosphate starvation-induced acid phosphatase from tomato. Possibly, decreased phosphate availability after pathogen infection acts as a signal for the activation of the potato phosphatase gene.  相似文献   

10.
11.
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p.  相似文献   

12.
13.
The effects of salicylic acid (SA) and jasmonic acid (JA) on plant defense responses were studied with aseptic potato (Solanum tuberosum L.) plantlets infected with Phytophthora infestans (Mont.) de Bary. Plant treatment with 10−6 M SA or 10−7 M JA induced plant resistance; the mixture of these acids was most efficient. After treatment with these compounds, phenolic compounds were accumulated and peroxidase was activated in the sites of pathogen localization, and this might be the reason of resistance enhancement. In addition, more H2O2 was accumulated in infected plants treated with JA or its mixture with SA but not in plants treated with SA alone. It might occur because of observed inhibition of catalase and activation of isoperoxidase with the isoelectric point (pI) of ∼9.3, which manifests an affinity for the pathogen cell wall. The data obtained allow us to recommend the application of these compounds for potato plant protection against late blight.  相似文献   

14.
The yeast cell wall is a crucial extracellular organelle that protects the cell from lysis during environmental stress and morphogenesis. Here, we demonstrate that the yapsin family of five glycosylphosphatidylinositol-linked aspartyl proteases is required for cell wall integrity in Saccharomyces cerevisiae. Yapsin null mutants show hypersensitivity to cell wall perturbation, and both the yps1Delta2Delta mutant and the quintuple yapsin mutant (5ypsDelta) undergo osmoremedial cell lysis at 37 degrees C. The cell walls of both 5ypsDelta and yps1Delta2Delta mutants have decreased amounts of 1,3- and 1,6-beta-glucan. Although there is decreased incorporation of both 1,3- and 1,6-beta-glucan in the 5ypsDelta mutant in vivo, in vitro specific activity of both 1,3- and 1,6-beta-glucan synthesis is similar to wild type, indicating that the yapsins affect processes downstream of glucan synthesis and that the yapsins may be involved in the incorporation or retention of cell wall glucan. Presumably as a response to the significant alterations in cell wall composition, the cell wall integrity mitogen-activated kinase signaling cascade (PKC1-MPK pathway) is basally active in 5ypsDelta. YPS1 expression is induced during cell wall stress and remodeling in a PKC1-MPK1-dependent manner, indicating that Yps1p is a direct, and important, output of the cell wall integrity response. The Candida albicans (SAP9) and Candida glabrata (CgYPS1) homologues of YPS1 complement the phenotypes of the yps1Delta mutant. Taken together, these data indicate that the yapsins play an important role in glucan homeostasis in S. cerevisiae and that yapsin homologues may play a similar role in the pathogenic yeasts C. albicans and C. glabrata.  相似文献   

15.
Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the first gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.  相似文献   

16.
Isozymes of glycosyl hydrolase Family 17 hydrolyze 1,3-beta-glucan polysaccharides found in the cell wall matrix of plants and fungi, enabling these plant enzymes to serve diverse roles in plant defense and plant development. Fourteen genes from Family 17 have been characterized in the genome of rice. A sequence dendrogram analysis divided these genes into four subfamilies. The recombinant GNS1 enzyme from subfamily B had 1,3;1,4-beta-glucanase activity, suggesting a role for this isozyme in plant development.  相似文献   

17.
18.
19.
Late blight caused by the oomycete Phytophthora infestans is the economically most important and destructive disease in potato cultivation. Quantitative resistance to late blight available in tetraploid cultivars is correlated with late maturity in temperate climates, which is an undesirable characteristic. A total of 30 DNA-based markers known to be linked to loci for pathogen resistance in diploid potato were selected and tested as polymerase chain reaction-based markers for linkage with quantitative trait loci (QTL) for late blight resistance and plant maturity in two half-sib families of tetraploid potatoes. Most markers originated from within or were physically closely linked to candidate genes for quantitative resistance factors. The families were repeatedly evaluated in the field for quantitative resistance to late blight and maturity. Resistance was corrected for the maturity effect. Nine of eleven different map segments tagged by the markers harbored QTL affecting maturity-corrected resistance. Interactions were found between unlinked resistance QTL, providing testable strategies for marker-assisted selection in tetraploid potato. Based on the linkage observed between QTL for resistance and plant maturity and based on the genetic interactions observed between candidate genes tagging resistance QTL, we discuss models for the molecular basis of quantitative resistance and maturity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号