首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Although white-tailed deer (Odocoileus virginianus) are one of North America's best studied mammals, no information is available concerning allelic diversity at any locus of the major histocompatibility complex in this taxon. Using the polymerase chain reaction, single-stranded conformation polymorphism analysis, and DNA sequencing techniques, 15 DRB exon 2 alleles were identified among 150 white-tailed deer from a single population in southeastern Oklahoma. These alleles represent a single locus and exhibit a high degree of nucleotide and amino acid polymorphism, with most amino acid variation occurring at positions forming the peptide binding sites. Furthermore, twenty-seven amino acid residues unique to white-tailed deer DRB alleles were detected, with 19 of these occurring at residues forming contact points of the peptide binding region. Significantly higher rates of nonsynonymous than synonymous substitutions were detected among these DRB alleles. In contrast to other studies of Artiodactyla DRB sequences, interallelic recombination does not appear to be playing a significant role in the generation of allelic diversity at this locus in white-tailed deer. To examine evolution of white-tailed deer (Odvi-DRB) alleles within Cervidae, we performed a phylogenetic analysis of all published red deer (Ceel-DRB), roe deer (Caca-DRB), and moose (Alal-DRB) DRB alleles. The phylogenetic tree clearly shows a trans-species persistence of DRB lineages among these taxa. Moreover, this phylogenetic tree provides insight into evolution of DRB allelic lineages within Cervidae and may aid in assignment of red deer DRB alleles to specific loci. Received: 25 June 1998 / Revised: 2 September 1998  相似文献   

2.
The major histocompatibility complex (Mhc) is a family of loci characterized by its relatively rapid evolutionary turnover, large genetic distances between genes, and long persistence of allelic lineages effected by balancing selection. These features render the Mhc highly suitable for answering questions concerning speciation and adaptive radiation. The aim of the present study was to use Mhc-DRB genes to make inferences about the founding population of the Platyrrhini. Three segments, each approximately 300 base pairs in length, of the platyrrhine DRB genes were amplified by the polymerase chain reaction and sequenced. The segments were derived from intron 2, exon 3, and exon 6 of DRB genes from different species of New World monkeys. The results of the study have revealed that on a phylogenetic tree, all of the tested platyrrhine genes appear to form a single cluster, while all catarrhine DRB genes form a distinct cluster, although the bootstrap values fail to provide statistically significant support for the separation of these two clades. This observation suggests that the multiple platyrrhine genes originated from a single ancestral gene after the divergence of the Platyrrhini and Catarrhini and thus contradicts the results of an earlier study in which some exon 2 DRB sequences appeared to predate the split of the two primate groups. The inconsistency in the DRB gene phylogeny can be explained by postulating convergent evolution for the peptide-binding region of the DRB exon 2 sequences. The phylogeny of the platyrrhine DRB genes (except for exon 2) is relatively "shallow"; the distances between genes are relatively short (in comparison to the catarrhine DRB genes), and there is a tendency for sequences of individual species to cluster together. The phylogeny of the platyrrhine DRB genes is consistent with the postulate that a small population founded the group and that there is an ongoing adaptive radiation from small, relatively isolated founding populations.  相似文献   

3.
The Major Histocompatibility Complex (Mhc) genomic region of many vertebrates is known to contain at least one highly polymorphic class II gene that is homologous in sequence to one or other of the human Mhc DRB1 class II genes. The diversity of the avian Mhc class II gene sequences have been extensively studied in chickens, quails, and some songbirds, but have been largely ignored in the oceanic birds, including the flightless penguins. We have previously reported that several penguin species have a high degree of polymorphism on exon 2 of the Mhc class II DRB1-like gene. In this study, we present for the first time the complete nucleotide sequences of exon 2, intron 2, and exon 3 of the DRB1-like gene of 20 Humboldt penguins, a species that is presently vulnerable to the dangers of extinction. The Humboldt DRB1-like nucleotide and amino acid sequences reveal at least eight unique alleles. Phylogenetic analysis of all the available avian DRB-like sequences showed that, of five penguin species and nine other bird species, the sequences of the Humboldt penguins grouped most closely to the Little penguin and the mallard, respectively. The present analysis confirms that the sequence variations of the Mhc class II gene, DRB1, are useful for discriminating among individuals within the same penguin population as well those within different penguin population groups and species.The nucleotide sequence and amino acid sequence data reported in this paper have been submitted to the DDBJ database and have been assigned the accession numbers AB088371–AB088374, AB089199, AB154393–AB154399, and AB162144.  相似文献   

4.
Cotton-top tamarins (Saguinus oedipus) in captivity are unusual in that they exhibit low levels of polymorphism and allelic diversity at the major histocompatibility complex (Mhc) class I loci. Since the polymorphism has previously only been examined in captive tamarins, we analyzed the Mhc class I alleles of a population of wild tamarins. These wild tamarins, like their captive counterparts, exhibited limited class I polymorphism. We also assessed the levels of polymorphism and allelic diversity at the Mhc class II DQA1, DQB1, DQB2, and the DRB loci in captive populations of cotton-top tamarins. In contrast to the extensive polymorphism in Old World monkeys, only two alleles were detected at each of DQA1 and DQB1. Also, the DQB2 locus was monomorphic and conserved between New and Old World monkeys. Sequences derived from four putative DRB loci were obtained, and extensive polymorphism was found at all four loci. Phylogenetic analysis did not indicate that any of the tamarin DRB loci, with the possible exception of Saoe-DRB3, were orthologous to the human DRB loci. At three of the DRB loci (Saoe-DRB11, Saoe-DRB * W12, Saoe-DRB * W22), the number of nonsynonymous changes was higher than the number of synonymous changes in the putative antigen recognition sites, indicative of positive selection. We found no support for a restriction on the polymorphism at the cotton-top tamarin class II loci. However, the allelic diversity at some of the Saoe-DRB loci is more limited than for the HLA-DRB1, consistent with a restriction imposed by the bone marrow-chimerical lifestyle.  相似文献   

5.
Thirty complete coding sequences of human major histocompatibility complex (Mhc) class II DRB alleles, spanning 237 codons, were analyzed for phylogenetic information using distance, parsimony, and likelihood approaches. Allelic genealogies derived from different parts of the coding sequence (exon 2, the 5′ and 3′ ends of exon 2, respectively, and exons 3–6) were compared. Contrary to prior assertions, a rigorous analysis of allelic genealogies in this gene family cannot be used to justify the claim that the lineage leading to modern humans contained on average at least 100,000 individuals. Phylogenetic inferences based upon the exon 2 region of the DRB loci are complicated by selection and recombination, so this part of the gene does not provide a complete and accurate view of allelic relationships. Attempts to reconstruct human history from genetic data must use realistic models which consider the complicating factors of nonequilibrium populations, recombination, and different patterns of selection. Received: 19 February 1997 / Accepted: 12 June 1997  相似文献   

6.
7.
The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.  相似文献   

8.
The major histocompatibility complex (Mhc) of domestic chickens has been characterized as small and relatively simple compared with that of mammals. However, there is growing evidence that the Mhc of many bird lineages may be more complex, even within the Order Galliformes. In this study, we measured genetic variation and balancing selection at Mhc loci in another galliform, the greater prairie-chicken. We cloned and sequenced a 239 bp fragment of Mhc Class II β-chain (BLB) exon 2 in 14 individuals. There was a total of 10 unique sequences and a minimum of four BLB loci. The d N/d S ratio at peptide-binding codons was significantly greater than one, suggesting balancing selection is acting on the BLB. We also recovered two YLB sequences, which clustered tightly with YLB sequences from three other species: domestic chicken, black grouse and common quail. The relatively large number of loci revealed in our study suggests that even closely related galliforms differ in the level of Mhc variation and structure.  相似文献   

9.
In this study, we aimed to assess the sequence diversity of major histocompatibility complex (MHC) class-II DRB gene at exon 2 in gazelles raised in Sanliurfa Province of Turkey. Twenty DNA samples isolated from gazelles (Gazella subgutturosa) were used for sequencing exon 2 of MHC class-II DRB gene. Target region was amplified by polymerase chain reaction (PCR) and their products were directly sequenced. Nine of these 20 samples yielded unambiguously readable sequences. Three of the nine samples were homozygotes and each showed different sequences. A 262-bp sequence obtained from the three homozygote samples were submitted to GenBank (accession numbers: KC309405, KC309406 and KC309407). Using an allele specific PCR, we detected 10 additional haplotypes. Among 13 haplotypes, 45 nucleotide positions were polymorphic and most of the polymorphic nucleotide positions localized at peptide-binding region (PBR). Rates of nonsynonymous substitutions were significantly higher than synonymous substitutions at PBR. Phylogenetic analysis of the haplotypes showed that 10 haplotypes of the gazelles were clustered together while three were clustered with ovine and bovine haplotypes. The results indicated that at least 13 haplotypes at exon 2 of MHC class-II DRB gene were showing high degree of nucleotide and amino acid diversity, and certain haplotypes of G. subgutturosa were more similar to haplotypes from sheep or cattle than to each other. Rates of synonymous and nonsynonymous substitutions suggested that positive selection was a driving force for diversity at this locus in G. subgutturosa.  相似文献   

10.
The molecular diversity and phylogenetic relationships of two class II genes of the baleen whale major histocompatibility complex were investigated and compared to toothed whales and out-groups. Amplification of the DQB exon 2 provided sequences showing high within-species and between-species nucleotide diversity and uninterrupted reading frames consistent with functional class II loci found in related mammals (e.g., ruminants). Cloning of amplified products indicated gene duplication in the humpback whale and triplication in the southern right whale, with average nucleotide diversity of 5.9 and 6.3%, respectively, for alleles of each species. Significantly higher nonsynonymous divergence at sites coding for peptide binding (32% for humpback and 40% for southern right) suggested that these loci were subject to positive (overdominant) selection. A population survey of humpback whales detected 23 alleles, differing by up to 21% of their inferred amino acid sequences. Amplification of the DRB exon 2 resulted in two groups of sequences. One was most similar to the DRB3 of the cow and present in all whales screened to date, including toothed whales. The second was most similar to the DRB2 of the cow and was found only in the bowhead and right whales. Both loci showed low diversity among species and apparent loss of function or altered function including interruption of reading frames. Finally, comparison of inferred protein sequence of the DRB3-like locus suggested convergence with the DQB, perhaps resulting from intergenic conversion or recombination.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders—Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera. Received: 26 October 1998 / Accepted: 21 December 1998  相似文献   

12.
 The class I genes of the major histocompatibility complex (Mhc) are here investigated for the first time in a passerine bird. The great reed warbler is a rare species in Sweden with a few semi-isolated populations. Yet, we found extensive Mhc class I variation in the study population. The variable exon 3, corresponding to the α2 domain, was amplified from genomic DNA with degenerated primers. Seven different genomic class I sequences were detected in a single individual. One of the sequences had a deletion leading to a shift in the reading frame, indicating that it was not a functional gene. A randomly selected clone was used as a probe for restriction fragment length polymorphism (RFLP) studies in combination with the restriction enzyme Pvu II. The RFLP pattern was complex with 21–25 RFLP fragments per individual and extensive variation. Forty-nine RFLP genotypes were detected in 55 tested individuals. To study the number of transcribed genes, we isolated 14 Mhc class I clones from a cDNA library from a single individual. We found eight different sequences of four different lengths (1.3–2.2 kilobases), suggesting there are at least four transcribed loci. The number of nonsynonymous substitutions (d N ) in the peptide binding region of exon 3 were higher than the number of synonymous substitutions (d S ), indicating balancing selection in this region. The number of transcribed genes and the numerous RFLP fragments found so far suggest that the great reed warbler does not have a "minimal essential Mhc" as has been suggested for the chicken. Received: 13 May 1998 / Revised: 18 August 1998  相似文献   

13.
  In both Old World and New World monkeys Mhc-DRB sequences have been found which resemble human DRB1*03 and DRB3 genes in their second exon. The resemblance is shared sequence motifs and clustering of the genes or the encoded proteins in phylogenetic trees. This similarity could be due to common ancestry, convergence at the molecular level, or chance. To test which of these three explanations applies, we sequenced segments of New World monkey and macaque genes which encompass the entire second exon and large parts of both flanking introns. The test strongly supports the monophyly of New World monkey DRB intron sequences. The phylogenies of introns 1 and 2 from DRB1*03-like and DRB3-like genes are congruent, but both are incongruent with the exon 2-based phylogeny. The matching of intron 1- and intron 2-based phylogenies with each other suggests that reciprocal recombination has not played a major role in exon 2 evolution. Statistical comparisons of exon 2 from different DRB1*03 and DRB3 lineages indicate that it was neither gene conversion (descent), nor chance, but molecular convergence that has shaped their characteristic motifs. The demonstration of convergence in anthropoid Mhc-DRB genes has implications for the classification, age, and mechanism of generation of DRB allelic lineages. Received: 30 August 1999 / Revised: 19 October 1999  相似文献   

14.
Cynomolgus monkey is one of the macaque species currently used as an animal model for experimental surgery and medicine, in particular, to experiment new drugs or therapy protocols designed for the prevention of allograft rejection. In this field, it is of utmost importance to select histoincompatible recipient–donor pairs. One way to ensure incompatibility between donor and recipient is to check their major histocompatibility complex (MHC) genotypes at the loci playing a determinant role in histocompatibility. We report in this paper on the cynomolgus monkey DRB polymorphism evidenced by sequencing of amplified exon 2 separated either by denaturing gradient gel electrophoresis (DGGE), or by cloning. By the study of 253 unrelated animals from two populations (Mauritius and The Philippines), we characterized 50 exon 2 sequences among which 28 were identical to sequences already reported in Macaca fascicularis or other macaque species (Macaca mulatta, Macaca nemestrina). By cloning and sequencing DRB cDNA, we revealed two additional DRB alleles. Out of the 20 haplotypes that we defined here, only two were found in both populations. The functional impact of DR incompatibility was studied in vitro by mixed lymphocyte culture.  相似文献   

15.
Trans-species origin of Mhc-DRB polymorphism in the chimpanzee   总被引:4,自引:0,他引:4  
Trans-specific evolution of allelic polymorphism at the major histocompatibility complex loci has been demonstrated in a number of species. Estimating the substitution rates and the age of trans-specifically evolving alleles requires detailed information about the alleles in related species. We provide such information for the chimpanzee DRB genes. DNA fragments encompassing exon 2 were amplified in vitro from genomic DNA of ten chimpanzees. The nucleotide sequences were determined and their relationship to the human DRB alleles was evaluated. The alleles were classified according to their positioni in dendrograms and the presence of lineage-specific motifs. Twenty alleles were found at the expressed loci Patr-DRB1,-DRB3, -DRB4, -DRB5, and at the pseudogenes Patr-DRB6, -DRB7; of these, 13 are new alleles. Two other chimpanzee sequences were classified as members of a new lineage tentatively designated DRBX. Chimpanzee counterparts of HLA-DRB1 * 01 and * 04 were not detected. The number of alleles found at individual loci indicates asymmetrical distribution of polymorphism between humans and chimpanzees. Estimations of intra-lineage divergence times suggest that the lineages are more than 30 million year old. Predictions of major chimpanzee DRB haplotypes are made.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M94937-M94954.  相似文献   

16.
 The variation at loci with similarity to DRB class II major histocompatibility complex loci was assessed in 313 beluga collected from 13 sampling locations across North America, and 11 narwhal collected in the Canadian high Arctic. Variation was assessed by amplification of exon 2, which codes for the peptide binding region, via the polymerase chain reaction, followed by either cloning and DNA sequencing or single-stranded conformation polymorphism analysis. Two DRB loci were identified in beluga: DRB1, a polymorphic locus, and, DRB2, a monomorphic locus. Eight alleles representing five distinct lineages (based on sequence similarity) were found at the beluga DRB1 locus. Although the relative number of alleles is low when compared with terrestrial mammals, the amino acid variation found among the lineages is moderate. At the DRB1 locus, the average number of nonsynonymous substitutions per site is greater than the average number of synonymous substitutions per site (0.0806 : 0.0207, respectively;P<0.01). Most of the 31 amino acid substitutions do not conserve the physiochemical properties of the residue, and 21 of these are located at positions implicated as forming pockets responsible for the selective binding of foreign peptide side chains. Only DRB1 variation was examined in 11 narwhal, revealing a low amount of variation. These data are consistent with an important role for the DRB1 locus in the cellular immune response of beluga. In addition, the ratio of nonsynonymous to synonymous substitutions is similar to that among primate alleles, arguing against a reduction in the balancing selection pressure in the marine environment. Two hypotheses may explain the modest amount of Mhc variation when compared with terrestrial mammals: small population sizes at speciation or a reduced neutral substitution rate in cetaceans. Received: 15 July 1997 / Revised: 24 March 1998  相似文献   

17.
Sequence analysis of a polymorphic Mhc class II gene in Pacific salmon   总被引:1,自引:0,他引:1  
Polymorphism of the nucleotide sequences encoding 149 amino acids of linked major histocompatibility complex (Mhc) class II 131 and 132 peptides, and of the intervening intron (548–773 base pairs), was examined within and among seven Pacific salmon (Oncorhynchus) species. Levels of nucleotide diversity were higher for theB1 sequence than forB2 or the intron in comparisons both within and between species. For the codons of the peptide binding region of the BI sequence, the level of nonsynonymous nucleotide substitution (dN) exceeded the level of synonymous substitution (dS) by a factor of ten for within-species comparisons, and by a factor of four for between-species comparisons. The excess of dN indicates that balancing selection maintains diversity at this salmonidMhc class II locus, as is common forMhc loci in other vertebrates. Levels of nucleotide diversity for both the exon and intron sequences were greater among than within species, and there were numerous species-specific nucleotides present in both the coding and noncoding regions. Thus, neighbor-joining analysis of both the intron and exon regions provided phylogenies in which the sequences clustered strongly by species. There was little evidence of shared ancestral (trans-species) polymorphism in the exon phylogeny, and the intron phylogeny depicted standard relationships among the Pacific salmon species. The lack of shared allelicB1 lineages in these closely related species may result from severe bottlenecks that occurred during speciation or during the ice ages that glaciated the rim of the north Pacific Ocean approximately every 100 000 years in the Pleistocene.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers U34692-U34720  相似文献   

18.
The guppy, Poecilia reticulata, a teleostean fish of the order Cyprinodontiformes, has been used extensively in studies of host-parasite interactions, courtship behavior, and mating preference, as well as in ecological and evolutionary genetics. A related species was among the first poikilotherm vertebrates to be used in the study of histocompatibility genes. All these studies could benefit from the identification and characterization of the guppy major histocompatibility complex (Mhc) genes. Here, both class I and class II genes of the guppy are described. The number of expressed loci, as determined by representation of clones in a cDNA library, sequencing, and Southern blot analysis, may be low in both Mhc classes: combined evidence suggests that there may be one expressed class II locus only and one or two expressed class I loci. The variability of aquaristic guppy stocks is very low: only three and two genes have been detected at the class I and class II loci, respectively, in the stocks examined. This genetic paucity is most likely the consequence of breeding practices employed by aquarists and commercial establishments. Limited sampling of wild guppy populations revealed extensive Mhc polymorphism at loci of both classes in nature. Comparison of guppy Mhc sequences with those of other vertebrates has revealed the existence of a set of insertions/deletions which can be used as characters in cladistic analysis to infer phylogenetic relationships among vertebrate taxa and the Mhc genes themselves. These indels are particularly frequent in the regions coding for the loops of 1 and 2 domains of class I proteins.The nucleotide sequence data reported in this publication have been submitted to the EMBL nucleotide sequence database and have been assigned the accession numbers Z54076-Z54095  相似文献   

19.
The polymorphic major histocompatibility complex (MHC) has gained a specific relevance in pathogen resistance and mate choice. Particularly the antigen-binding site (ABS), encoded by exon 2 of the DRB class II gene, exhibits numerous alleles and extensive sequence variations between alleles. A lack of MHC variability has attributed to instances such as bottleneck effects or relaxed selection pressure and has a certain impact on the long-term viability of the species concerned. As a result of seriously decreased population density during the last century, the current population of the endangered European mink (Mustela lutreola, L. 1761) has suffered from geographic isolation. In this study, we amplified a partial sequence of the MHC class II DRB exon 2 (229 bp), assessed the degree of genetic variation and compared the variability with those of other Mustelidae. As a result, nine alleles were detected in 20 investigated individuals, which differ from each other by four to 25 nucleotide substitutions (two to 11 amino acid substitutions). Whilst an equal ratio for synonymous and non-synonymous substitutions was found inside the ABS, synonymous substitutions were significantly higher than non-synonymous substitutions in the non-ABS region. Results might indicate that no positive selection exists within the ex situ population of M. lutreola, at least in the analysed fragment. In addition, phylogenetic analyses support the trans-species model of evolution. Becker and Nieberg have contributed equally to this work.  相似文献   

20.
A thoroughly characterized breeding colony of 172 pedigreed rhesus macaques was used to analyze exon 2 of the polymorphic Mamu-DPB1, -DQA1, -DQB1, and -DRB loci. Most of the monkeys or their ancestors originated in India, though the panel also included animals from Burma and China, as well as some of unknown origin and mixed breeds. In these animals, mtDNA appears to correlate with the aforementioned geographic origin, and a large number of Mamu class II alleles were observed. The different Mamu-DPB1 alleles were largely shared between monkeys of different origin, whereas in humans particular alleles appear to be unique for ethnic populations. In contrast to Mamu-DPB1, the highly polymorphic -DQA1/DQB1 alleles form tightly linked pairs that appear to be about two-thirds population specific. For most of the DQA1/DQB1 pairs, Mamu-DRB region configurations present on the same chromosome have been ascertained, resulting in 41 different -DQ/DRB haplotypes. These distinct DQ/DRB haplotypes seem to be specific for monkeys of a determined origin. Thus, in evolutionary terms, the Mamu-DP, -DQ, and -DR regions show increasing instability with regard to allelic polymorphism, such as for -DP/DQ, or gene content and allelic polymorphism, such as for -DR, resulting in population-specific class II haplotypes. Furthermore, novel haplotypes are generated by recombination-like events. The results imply that mtDNA analysis in combination with Mhc typing is a helpful tool for selecting animals for biomedical experiments.The sequences reported in this paper have been deposited in the EMBL database (accession nos. AJ534296–AJ534304, AJ 564564, and AJ557455–AJ557511)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号