首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A prolonged bloom of Karenia mikimotoi was observed during 2006 in Scottish waters. This bloom is thought to be unique in the region in terms of its large spatial extent. From its first detection in the west of the country, the bloom moved clockwise around the coast eventually reaching the east coast and the Shetland Isles to the north. The bloom resulted in extensive mortalities of benthic organisms including annelids and molluscs and some species of fish. Farmed fish mortalities were absent but gill damage was reported. The availability of satellite remote sensing, phytoplankton counts from multiple sites, meteorological data and some water chemistry, as well as information on the physical characteristics of the sampling sites, provided an extensive spatial and temporal data set. Analysis of remotely sensed chlorophyll-a data from Aqua-MODIS indicated that this parameter is a useful early warning indicator of K. mikimotoi in shelf waters off the Scottish west coast, and suggested that the bloom developed in this region prior to its advection to coastal waters. An earth observation (EO) based harmful bloom classifier for K. mikimotoi recognised areas of elevated K. mikimotoi cell density but generated false positives in areas of high reflectance. Data were also used to evaluate, in Scottish waters, various hypotheses that exist to explain the formation of K. mikimotoi blooms including phototaxis, nutrient availability, cell transport and elevated water temperature. Specifically, we sought to evaluate if routinely collected environmental data (water temperature, insolation, wind strength and direction, and sea-loch aspect) could be used as a predictor of bloom magnitude near aquaculture facility locations, which typically lie within fjordic sea lochs. Path analysis was used to derive intuitive models linking environmental drivers to bloom magnitude. Once the effects of latitude such as northward water cooling were taken into account, only rainfall was a significant predictor of bloom magnitude at the sampling sites. Therefore, while the offshore development and progression of a bloom may be predicted from satellite information, it is likely that local hydrodynamic influences are crucial in determining its magnitude at coastal aquaculture sites.  相似文献   

2.
Raine  R.  O'Boyle  S.  O'Higgins  T.  White  M.  Patching  J.  Cahill  Bronwyn  McMahon  T. 《Hydrobiologia》2001,465(1-3):187-193
An extensive surface bloom of the dinoflagellate Karenia mikimotoi occurred off southwestern Ireland during August, 1998. The bloom was evident both from remotely sensed satellite ocean colour data and as visibly discoloured water, from the mouth of Bantry Bay around towards Cork, extending some 60 km offshore. The timing of the bloom co-incided with a field survey in the area. This paper compares the surface distributions of chlorophyll and K. mikimotoi concentrations with satellite ocean colour and thermal infra-red sea surface temperature images, from which may be derived the origins of the bloom. It would appear that weak coastal upwelling transported a thermocline population of K. mikimotoi up to the surface in the region of the Fastnet Rock, where it was wind-dispersed eastwards across the northern Celtic Sea.  相似文献   

3.
The frequency and distribution of high biomass blooms produced by two dinoflagellate species were analysed along the French continental shelf from 1998 to 2012. Two species were specifically studied: Karenia mikimotoi and Lepidodinium chlorophorum. Based on remote-sensing reflectances at six channels (410, 430, 480, 530, 550 and 670 nm), satellite indices were created to discriminate the species forming the blooms. A comparison with observations showed that the identification was good for both species in spite of a lower specificity for L. chlorophorum. The overall analysis of the satellite indices, in association with some monitoring data and cruise observations, highlights the regularity of these events and their extent on the continental shelf. L. chlorophorum blooms may occur all along the South Coast of Brittany. All the coastal areas under the influence of river plumes and the stratified northern shelf area of the Western English Channel appear to be areas of bloom events for both species. These two species are likely to be in competitive exclusion as they share the same spatial distribution and the timing of their bloom is very close. Finally, due to the scarcity of off-shore observations, these satellite indices provide useful information regarding HABs management and the development of a warning system along the French coast.  相似文献   

4.
Blooms of the toxic dinoflagellate Karenia mikimotoi (K. mikimotoi) have occurred frequently in the East China Sea in recent decades and were responsible for massive mortalities of abalones in Fujian coastal areas in 2012, however, little is known about the effects of these blooms on other marine organisms. In this study, the toxic effects and the possible mechanisms of toxicity of K. mikimotoi from Fujian coastal waters on typical marine organisms at different trophic levels, including zooplankton (Brachionus plicatilis, Artemia salina, Calanus sinicus, and Neomysis awatschensis) and aquaculture species (Penaeus vannamei and Scophthalmus maximus) were investigated. At a bloom density of 3 × 104 cells/mL, the Fujian strain of K. mikimotoi significantly affected the tested organisms, which had mortality rates at 96 h of 100, 23, 20, 97, 33, and 53%, respectively. Moreover, the intact cell suspension was toxic to all tested species, whereas cell-free culture and the ruptured cell suspension had no significant effects on the tested organisms. Possible mechanisms for this toxic effect, including reactive oxygen species (ROS) and hemolytic toxins, were evaluated. For K. mikimotoi, 0.014 ± 0.004 OD/(104 cells) superoxide (O2) and 3.00 ± 0.00 nmol/(104 cells) hydrogen peroxide (H2O2) were measured, but hydrogen peroxide did not affect rotifers at that concentration, and rotifers were not protected from the lethal effects of K. mikimotoi when the enzymes superoxide dismutase and catalase were added to counteract the ROS. The lipophilic extract of K. mikimotoi had a hemolytic effect on rabbit erythrocytes but exhibited no significant toxicity. These results suggest that this strain of K. mikimotoi can have detrimental effects on several typical marine organisms and that its toxicity may be associated with intact cells but is not related to ROS or hemolytic toxins.  相似文献   

5.
In the summer of 2005 an exceptional bloom of the dinoflagellate Karenia mikimotoi occurred along Ireland's Atlantic seaboard and was associated with the mass mortality of both benthic and pelagic marine life. Oxygen depletion, cellular toxicity and physical smothering, are considered to be the main factors involved in mortality. In this paper we use a theoretical approach based on stoichiometry (the Anderson ratio) and an average K. mikimotoi cellular carbon content of 329 pg C cell−1 (n = 20) to calculate the carbonaceous and nitrogenous oxygen demand following bloom collapse. The method was validated against measurements of biochemical oxygen demand and K. mikimotoi cell concentration. The estimated potential oxygen utilisation (POU) was in good agreement with field observations across a range of cell concentrations. The magnitude of POU following bloom collapse, with the exception of three coastal areas, was considered insufficient to cause harm to most marine organisms. This indicates that the widespread occurrence of mortality was primarily due to other factors such as cellular toxicity and/or mucilage production, and not oxygen depletion or related phenomena. In Donegal Bay, Kilkieran Bay and inner Dingle Bay, where cell densities were in the order of 106 cells L−1, estimated POU was sufficient to cause hypoxia. Of the three areas, Donegal Bay is considered to be the most vulnerable due to its hydrographic characteristics (seasonally stratified, weak residual flow) and hypoxic conditions (2.2 mg L−1 O2) were directly observed in the Bay post bloom collapse. Here, depending on the time of bloom collapse, depressed DO levels could persist for weeks and continue to have a potentially chronic impact on the Bay.  相似文献   

6.
A batch culture experiment was conducted to study the interactive effects of ocean acidification (OA) and solar ultraviolet radiation (UVR, 280–400 nm) on the harmful dinoflagellate Karenia mikimotoi. Cells were incubated in 7-days trials under four treatments. Physiological (growth, pigments, UVabc) and toxicity (hemolytic activity and its toxicity to zebrafish embryos) response variables were measured in four treatments, representing two factorial combinations of CO2 (400 and 1000 μatm) and solar irradiance (with or without UVR). Toxic species K. mikimotoi showed sustained growth in all treatments, and there was not statistically significant difference among four treatments. Cell pigment content decreased, but UVabc and hemolytic activity increased in all HC treatments and PAB conditions. The toxicity to zebrafish embryos of K. mikimotoi was not significantly different among four treatments. All HC and UVR conditions and the combinations of HC*UVR (HC-PAB) positively affected the UVabc, hemolytic activity in comparison to the LC*P (LC-P) treatment, and negatively affected the pigments. Ocean acidification (OA) was probably the main factor that affected the chlorophyll-a (Chl-a) and UVabc, but UVR was the main factor that affected the carotenoid (Caro) and hemolytic activity. There were no significant interactive effects of OA*UVR on growth, toxicity to zebrafish embryos. If these results are extrapolated to the natural environment, it can be hypothesized that this strain (DP-C32) of K. mikimotoi cells have the efficient mechanisms to endure the combination of ocean acidification and solar UVR. It is assumed that this toxic strain could form harmful bloom and enlarge the threatening to coastal communities, marine animals, even human health under future conditions.  相似文献   

7.
Effects of intracellular polyamines on the growth of the harmful dinoflagellate Karenia mikimotoi were investigated in culture experiments using an axenic culture. Polyamines were analyzed with HPLC. Free norspermine was the most abundant polyamine during growth of K. mikimotoi. Cellular norspermidine contents increased significantly during the exponential growth phase with increasing growth rate. The maximum growth yield of K. mikimotoi was reduced by the polyamine biosynthetic inhibitor, d,l-alpha-difluoromethylornithine (DFMO) which inhibits ornithine decarboxylase. These results suggest that polyamines, especially free norspermine, play significant roles in the growth of K. mikimotoi.  相似文献   

8.
Studies over the last two decades suggested that mixotrophy could be an important adaptive strategy for some bloom-forming dinoflagellates. In the coastal waters adjacent to the Changjiang River estuary in the East China Sea, recurrent blooms of dinoflagellates Prorocentrum donghaiense, Karenia mikimotoi and Alexandrium catenella started to appear from the beginning of the 21 century, but roles of mixotrophy in the formation of dinoflagellate blooms were not well understood. In the current study, mixotrophy-based growth of four selected bloom-causative dinoflagellate species, i.e. K. mikimotoi, A. catenella, P. donghaiense and Prorocentrum micans, were studied. Dinoflagellates were co-cultured with different prey organisms, including bacterium Marinobacter sp., microalgae Isochrysis galbana and Hemiselmis virescens, under a variant of nutrient conditions. It was found that growth of dinoflagellate K. mikimotoi was significantly promoted with the presence of prey organisms. Growth of P. donghaiense and P. micans was only slightly improved. For A. catenella, the addition of prey organisms has no effects on the growth, while both of the two prey microalgae I. galbana and H. virescens were killed, probably by allelochemicals released from A. catenella. There was no apparent relationship between nutrient conditions and the mixotrophy-based growth of the tested dinoflagellates. Based on the results of the growth experiment, it is implicated that mixotrophy may play different roles in the growth and bloom of the four dinoflagellate species. It can be an important competitive strategy for K. mikimotoi. For the two Prorocentrum species and A. catenella, however, the role of mixotrophy is much limited. They may depend more on other competitive strategies, such as phototrophy-based growth and allelopathic effect, to prevail in the phytoplankton community and form blooms.  相似文献   

9.
Karenia mikimotoi is a toxic, widespread dinoflagellate which could produce hemolytic toxins and ichthyotoxins affecting fisheries within the area of its bloom. Previous ecophysiological studies indicated that the enhance of environmental phosphate concentration could promote the growth of K. mikimotoi. Intrinsic mechanisms regarding the effects of external phosphate on its photosynthesis, cell cycle succession and differential proteins’ expressions are still unknown. K. mikimotoi was cultured in phosphate-deprived medium, while the culture in f/2 medium (Guillard, 1975) was introduced as phosphate-sufficient control experiment. Cell counts and phosphate concentration detection were performed every other day. Flowcytometry was applied to measure cell cycle succession and chlorophyll fluorescence intensity fluctuation. Differential proteomics expression was examined by SDS-PAGE tandem LTQ Orbitrap MS/MS spectrometry. Functions of each differential protein were searched within NCBInr protein database and Swissprot database. Our study demonstrated that phosphate stress inhibited growth and cell cycle succession of K. mikimotoi remarkably (p < 0.01). Algal chlorophyll fluorescence intensity was significantly affected by phosphate deprivation (p < 0.05). 11 species of differential proteins were detected only in phosphate-limited culture sample which related to stress signal transduction, vacuolar phosphate release, phospholipid degradation, organic acid synthesis and phagotrophy. 4 kinds of differential proteins were identified only in f/2 medium culture sample which referred to cell proliferation, glycolysis, SAM cycle and polyamine production. Based on analysis of differential proteomic functional annotation, we hypothesized proteomic response mechanism of K. mikimotoi to phosphate stress. Molecular biological responses of dinoflagellate K. mikimotoi to phosphate stress was explored.  相似文献   

10.
The toxic dinoflagellate Karenia mikimotoi has been well-known for causing large-scale and dense harmful algal blooms (HABs) in coastal waters worldwide and serious economic loss in aquaculture and fisheries and other adverse effects on marine ecosystems. Whether K. mikimotoi forms resting cysts has been a puzzling issue regarding to the mechanisms of bloom initiation and geographic expansion of this species. We provide morphological and molecular confirmation of sexually produced thin-walled resting cysts by K. mikimotoi based on observations of laboratory cultures and their direct detection in marine sediments. Light and scanning electron microscopy evidences for sexual reproduction include attraction and pairing of gametes, gamete fusion, formation of planozygote and thin-walled cyst, and the documentation of the thin-walled cyst germination processes. Evidence for cysts in marine sediments was in three aspects: positive PCR detection of cysts using species-specific primers in the DNA extracted from whole sediments; fluorescence in situ hybridization detection of cysts using FISH probes; and single-cell PCR sequencing for cysts positively labeled with FISH probes. The existence of sexually produced, thin-walled resting cysts by K. mikimotoi provides a possible mechanism accounting for the initiation of annually recurring blooms at certain regions and global expansion of the species during the past decades.  相似文献   

11.
Nearly annual blooms of the marine dinoflagellate Karenia brevis, which initiate offshore on the West Florida Shelf in oligotrophic waters, cause widespread environmental and economic damage. The success of K. brevis as a bloom-former is partially attributed to its ability to use a diverse suite of nutrients from natural and anthropogenic sources, although relatively little is known about the ability of K. brevis and the closely related Karenia mikimotoi to use a variety of organic sources of phosphorus, including phosphomonoesters, phosphodiesters, and phosphonates. Through a series of bioassays, this study characterized the ability of axenic and nonaxenic K. brevis and K. mikimotoi clones isolated from Florida waters to use a variety of organic phosphorus compounds as the sole source of phosphorus for growth, comparing this utilization to that of inorganic sources of phosphate. Differing abilities of axenic and nonaxenic K. brevis and K. mikimotoi cultures to use phosphorus from the compounds evaluated were documented. Specifically, growth of axenic cultures was greatest on inorganic phosphorus and was not supported on the phosphomonoester phytate, or generally on phosphodiesters or phosphonates. The nonaxenic cultures were able to use organic compounds that the axenic cultures were not able to use, often after lags in growth, highlighting a potential role of co-associated bacterial communities to transform nutrients to bioavailable forms. Given the ability of K. brevis and K. mikimotoi to use a diverse suite of inorganic and organic phosphorus, bloom mitigation strategies should consider all nutrient forms.  相似文献   

12.
The dinoflagellate Karenia mikimotoi is a noxious and harmful algal bloom (HAB)-forming microalga. Establishing a rapid, accurate, and sensitive method of detecting this harmful alga is necessary to provide warnings of imminent HABs through field monitoring. Here, an isothermal amplification technique combined with a rapid analytical method for nucleic acid-based amplified products, i.e., hyperbranched rolling circle amplification (HRCA) coupled with lateral flow dipstick (LFD), hereafter denoted as HRCA-LFD, was established to detect K. mikimotoi. The HRCA-LFD assay relied on a padlock probe (PLP) targeting DNA template and an LFD probe targeting PLP. The sequenced internal transcribed spacer of K. mikimotoi through molecular cloning was used as the target of PLP. The optimized HRCA conditions was determined to be as follows: PLP concentration, 20 pM; ligation temperature, 65 °C; ligation time, 10 min; amplification temperature, 61 °C; and amplification time, 30 min. The developed HRCA-LFD assay was specific for K. mikimotoi, displaying no cross-reactivity with other common microalgae. Sensitivity-comparison tests indicated that HRCA-LFD assay was 100-fold more sensitive than PCR, with a detection limit of 0.1 cell mL−1 when used to analyze spiked field samples. The analysis with field samples also indicated that HRCA-LFD assay was suitable for samples with a target cell density range of 1–1000 cells mL−1. All of these results suggested that HRCA-LFD assay is an alternative method for the sensitive and reliable detection of K. mikimotoi from marine water samples.  相似文献   

13.
Karenia mikimotoi is a worldwide bloom-forming dinoflagellate in the genus Karenia. Blooms of this alga have been observed since the 1930s and have caused mass mortalities of fish, shellfish, and other invertebrates in the coastal waters of many countries, including Japan, Norway, Ireland, and New Zealand. This species has frequently bloomed in China, causing great financial losses (more than 2 billion yuan, Fujian Province, 2012). K. mikimotoi can adapt to various light, temperature, salinity, and nutrient conditions, which together with its complex life history, strong motility, and density-dependent allelopathy, allows it to form blooms that are lethal to almost all marine organisms. However, its toxicity differs between subspecies and some target-species-specific toxicity has also been recorded. Significant gill disorder is observed in affected fish, to which the massive fish kills are attributed, rather than to the hypoxia that occurs in the fading stage of a bloom. However, although this species is haemolytic and cytotoxic, and generates reactive oxygen species, none of the isolated toxins or lipophilic extracts have toxic effects as extreme as those of the intact algal cells. The toxic effects of K. mikimotoi are strongly related to contact with intact cells. Several reasonable hypotheses of how and why this species blooms and causes mass mortalities have been proposed, but further research is required.  相似文献   

14.
The parasitic dinoflagellates in the genus of Amoebophrya can infect broad ranges of planktonic dinoflagellates, and transform algal biomass into organic matter that can be recycled within the planktonic community. The ecological significance of Amoebophrya spp. during harmful algal bloom (HAB) events was gradually recognized along with revelation of its host specificity and diversity in picoplankton communities. The eutrophicated coastal waters of China are frequently affected by HABs, particularly in Changjiang (Yangtze River) estuary and the adjacent East China Sea; while, no research has been conducted to explore the ecological roles of parasitism during HAB events and the related dinoflagellate bloom dynamics. For the first time, we confirmed the presence of Amoebophrya infections in the planktonic community of this region; six species of dinoflagellates were infected, including Ceratium tripos, Scrippsiella trochoidea, Gonyaulax spinifera, Gymnodinium sp., Gonyaulax sp. and an Alexandrium sp. Molecular sequences retrieved from environmental water samples revealed high genetic diversity of Amoebophryidae-like organisms in the water column. Amoebophrya-infected dinoflagellates were only observed in high salinity (>20) stations suggesting that salinity may be a factor limiting the distribution of Amoebophyra infections in natural environment. Whereas, no evidence of Amoebophrya infection was observed in the bloom-forming species Karenia mikimotoi, suggesting that K. mikimotoi in this region was likely free of Amoebophridae infection.  相似文献   

15.
The marine phytoplankton, Karenia mikimotoi, causes severe red tides which are associated with mass mortality of marine fish, and have expanded their distributions in the coastal waters of western Japan. To assess the dispersal mechanism, a population genetic study using highly polymorphic genetic markers is one of the crucial approaches. Here we developed 12 polymorphic microsatellite markers from K. mikimotoi. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from 5 to 23, and the estimate of gene diversity was from 0.551 to 0.933 across the 12 microsatellites. We consider these loci potentially useful for detailing the genetic structure and gene flow among K. mikimotoi populations.  相似文献   

16.
A fuzzy logic model to describe the seasonal evolution of Nodularia spumigena blooms in the Gulf of Finland was built and calibrated on the basis of monitoring data. The model includes three phosphate sources: excess phosphate after the annual spring bloom and parameterised phosphate transport to the upper mixed layer by turbulent mixing and upwelling events. Surface layer temperature and wind mixing form the physical conditions controlling the growth of N. spumigena. Model simulations revealed that phosphate input caused by turbulent mixing and upwelling have to be taken into account to achieve the best fit with observed data. Testing the fuzzy model for early prediction of maximum N. spumigena biomass about a month before the usual occurrence of blooms, gave good results. The potential use of the model for prediction of bloom risk at a certain location along the Estonian or Finnish coast was tested. The bloom transport velocities used in the fuzzy model were pre-calculated by a 3D numerical circulation model for different wind regimes.  相似文献   

17.
Karenia concordia, Karenia brevisulcata and Karenia mikimotoi are anomalously-pigmented gymnodinoids characterised by having fucoxanthin and two acyl-oxyfucoxanthin derivatives, instead of having peridinin as in the majority of photosynthetic dinoflagellates. HPLC pigment analyses of all three species, cultured in identical conditions, revealed two different patterns of pigmentation: (1) 19′-hexanoyl-oxyfucoxanthin-rich with very little fucoxanthin, as represented by K. concordia and K. brevisulcata, and (2) fucoxanthin-rich with much less acyl-oxyfucoxanthins, as represented by K. mikimotoi. Moreover, zeaxanthin was detected in both K. concordia and K. brevisulcata, but only trace amount in K. mikimotoi (generally not detected in this species). Both K. concordia and K. brevisulcata lacked carotene-β,ɛ and carotene-ɛ,ɛ. These differed from K. mikimotoi which generally produced all three carotenes (β,β; β,ɛ and ɛ,ɛ). At exponential growth phase, chlorophyll a content on a per cell basis of K. mikimotoi was more than double that of K. concordia and six times greater than that of K. brevisulcata. Toxicological tests conducted on rotifers elicited distinct responses – single-strength lipophilic cell extracts of both K. concordia and K. brevisulcata killed rotifers in tens of minutes (fast-acting), while that of double-strength K. mikimotoi, in tens of hours (slow-acting). Additionally, mature and nauplii forms of brine shrimps exposed to lipophilic cell extract of K. concordia appeared to be temporarily ‘anaesthetised’, but recovered in c. 45 min and 3 h respectively. No such ‘anaesthetic’ effect was observed on both forms of brine shrimps exposed to lipophilic extracts of either K. brevisulcata or K. mikimotoi. The former, however, killed both forms of brine shrimps in a matter of tens of hours, while those of the latter, did not cause any harm to either form tested.  相似文献   

18.
The effects of algal blooms on seaweeds have been rarely studied, although harmful algal blooms (HABs) are now normally regarded as worldwide incidents. In the present study, the effects of dense Karenia mikimotoi cells on the growth and photosynthesis of Hizikia fusiformis, a common and commercially cultivated macroalga in coastal waters of the East China Sea (ECS), were studied to understand the possible consequences when the mariculture encountered a dense harmful algal bloom. Furthermore, the counteraction of the latter on the growth and photosynthetic activities of K. mikimotoi was determined to evaluate the contribution of H. fusiformis commercial cultivation to environmental improvements. The results showed that the chlorophyll a (Chl a) contents, maximal photochemical efficiency (Fv/Fm) and relative electron transfer rate (rETR) of gas vesicles (specialized leaves), adult and young receptacles of H. fusiformis were all significantly (P < 0.05) inhibited compared with the mono-cultured ones. When compared with mono-cultured H. fusiformis (without K. mikimotoi), the Chl a contents in gas vesicles, adult and young receptacles decreased by 20.6%, 17.6% and 33.2% within 2 weeks. Correspondingly, the Fv/Fm decreased by 7.9%, 37.4% and 43.7%; the apparent photosynthetic efficiency (α) decreased by 9.4%, 47.1% and 48.3%; and rETR decreased by 19.5%, 52.6% and 68.2%, respectively. The Chl a concentration of the mono-cultured K. mikimotoi (without H. fusiformis) increased to 2247.97 μg l−1 from 958.11 μg l−1 within 14 d. Those of the co-cultivated ones (with H. fusiformis), however, increased to 1591.31 μg l−1 on the 8th day and then decreased rapidly to 254.99 (±37.73) μg l−1 after the next 6 days. Furthermore, compared with the mono-cultured K. mikimotoi cells, the Fv/Fm, α and rETRmax of co-cultivated ones decreased by 9.4%, 36.3% and 30.6%, respectively. The results indicated that the mature sporophytes of H. fusiformis were resistant to dense K. mikimotoi blooms and this resistance was organ-dependent as: gas vesicle > adult receptacles > young receptacles. On the other hand, commercial mariculture of H. fusiformis demonstrated the potential of preventing the occurrence of algal blooms.  相似文献   

19.
Autonomous underwater gliders with customized sensors were deployed in October 2011 on the central West Florida Shelf to measure a Karenia brevis bloom, which was captured in satellite imagery since late September 2011. Combined with in situ taxonomy data, satellite measurements, and numerical circulation models, the glider measurements provided information on the three-dimensional structure of the bloom. Temperature, salinity, fluorescence of colored dissolved organic matter (CDOM) and chlorophyll-a, particulate backscattering coefficient, and K. brevis-specific chlorophyll-a concentrations were measured by the gliders over >250 km from the surface to about 30-m water depth on the shallow shelf. At the time of sampling the bloom was characterized by uniform vertical structures, with relatively high chlorophyll-a and CDOM fluorescence, low temperature, and high salinity. Satellite data extracted along the glider tracks demonstrated coherent spatial variations as observed by the gliders. Further, the synoptic satellite observations revealed the bloom evolution during the 7 months between late September 2011 and mid April 2012, and showed the maximum bloom size of ∼3000 km2 around 23 November. The combined satellite and in situ data also confirmed that the ratio of satellite-derived fluorescence line height (FLH) to particulate backscattering coefficient at 547 nm (bbp(547)) could be used as a better index than FLH alone to detect K. brevis blooms. Numerical circulation models further suggested that the bloom could have been initiated offshore and advected onshore via the bottom Ekman layer. The case study here demonstrates the unique value of an integrated coastal ocean observing system in studying harmful algal blooms (HABs).  相似文献   

20.
The evolution of harmful algal blooms, while dependent upon complex biological interactions, is equally dependent upon the ocean circulation since the circulation provides the basis for the biological interactions by uniting nutrients with light and distributing water properties. For the coastal ocean, the circulation and the resultant water properties, in turn, depend on interactions between both the continental shelf and the deep-ocean and the continental shelf and the estuaries since the deep-ocean and the estuaries are primary nutrient sources. Here we consider a coordinated program of observations and models for the West Florida Continental Shelf (WFS) intended to provide a supportive framework for K. brevis red-tide prediction as well as for other coastal ocean matters of societal concern. Predicated on lessons learned, the goal is to achieve a system complete enough to support data assimilative modeling and prediction. Examples of the observations and models are presented and application is made to aspects of the 2005 red-tide. From an observational perspective, no single set of measurements is adequate. Required are a broad mix of sensors and sensor delivery systems capable of describing the three-dimensional structure of the velocity and density fields. Similarly, models must be complete enough to include the relevant physical processes, and data assimilation provides the integrative framework for maximizing the joint utility of the observations and models. While we are still in the exploratory stages of development, the lessons learned and application examples may be useful to similar programs under development elsewhere. One scientific finding is that the key to understanding K. brevis red-tide on the WFS lies not at the surface, but at depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号