共查询到14条相似文献,搜索用时 15 毫秒
1.
A predominant pathway implicated in repair of DNA double-strand breaks (DSBs) is the evolutionarily conserved non-homologous end-joining (NHEJ) pathway. Among the major constituents of this pathway in Saccharomyces cerevisiae is Nej1p, for which a biochemical function has yet to be determined. In this work we demonstrate that Nej1p exhibits a DNA binding activity (KD approximately 1.8 microM) comparable to Lif1p. Although binding is enhanced with larger substrates (>300 bp), short approximately 20 bp substrates can suffice. This DNA binding activity is the first biochemical evidence supporting the idea that Nej1p plays a direct role in the repair of double-strand breaks. The C-terminus of Nej1p is required for interaction with Lif1p and is sufficient for DNA binding. Structural characterization reveals that Nej1p exists as a dimer, and that residues 1-244 are sufficient for dimer formation. Nej1p (aa 1-244) is shown to be defective in end-joining in vivo. Preliminary functional and structural studies on the Nej1p-Lif1p complex suggest that the proteins stably co-purify and the complex binds DNA with a higher affinity than each independent component. The significance of these results is discussed with reference to current literature on Nej1p and other end-joining factors (mammalian and yeast), specifically the recently identified putative mammalian homologue of Nej1p, XLF/Cernunnos. 相似文献
2.
Anne-Sophie Borowiec Frédéric HagueValérie Gouilleux-Gruart Kaiss LassouedHalima Ouadid-Ahidouch 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(5):723-730
Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K+) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K+ channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K+ channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21WAF1/Cip1 expression with a kinetic similar to that of cyclin D1, however p27Kip1 expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8 h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21WAF1/Cip1 and p27Kip1 expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K+ channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E. 相似文献
3.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter. 相似文献
4.
A González-Fernández P Aller J Sans C De la Torre 《Biology of the cell / under the auspices of the European Cell Biology Organization》1992,74(3):243-247
The involvement of portions of the genome replicated at different times of the S period in the regulation of the G1 to S transition was analyzed in Allium cepa L meristem cells. For this, DNA bromosubstitution confined to discrete portions of a previous S period followed by anoxic UVA irradiation (300-400 nm light) was performed in synchronous cells. Sequences replicated in late S appeared to be involved in the positive regulation of the initiation of replication. Hence, cells were prevented from initiating replication if irradiated at mid G1 only when the DNA sequences replicated in the last third of the previous S period were bromosubstituted. Cycloheximide-induced inhibition of protein synthesis at late G1 also prevented the G1 to S transition. Sequences replicated in mid S appeared unrelated to any control of the initiation of replication. On the other hand, sequences replicated in the first third of the S period seemed to be involved in the negative regulation of the initiation of replication, since irradiation after previous bromosubstitution of early replicating DNA sequences advanced G1 cells into the next S phase and increased the proliferative fraction of the population. Finally, the simultaneous inactivation of DNA sequences involved in both positive and negative regulation of replication allowed the cells to enter into S. 相似文献
5.
João Agostinho Machado-Neto Mariana Lazarini Patricia Favaro Gilberto Carlos Franchi Jr. Alexandre Eduardo Nowill Sara Teresinha Olalla Saad Fabiola Traina 《Experimental cell research》2014
ANKHD1 is a multiple ankyrin repeat containing protein, recently identified as a novel member of the Hippo signaling pathway. The present study aimed to investigate the role of ANKHD1 in DU145 and LNCaP prostate cancer cells. ANKHD1 and YAP1 were found to be highly expressed in prostate cancer cells, and ANKHD1 silencing decreased cell growth, delayed cell cycle progression at the S phase, and reduced tumor xenograft growth. Moreover, ANKHD1 knockdown downregulated YAP1 expression and activation, and reduced the expression of CCNA2, a YAP1 target gene. These findings indicate that ANKHD1 is a positive regulator of YAP1 and promotes cell growth and cell cycle progression through Cyclin A upregulation. 相似文献
6.
Identification and characterization of P15RS, a novel P15(INK4b) related gene on G1/S progression 总被引:3,自引:0,他引:3
Liu J Liu H Zhang X Gao P Wang J Hu Z 《Biochemical and biophysical research communications》2002,299(5):880-885
To screen genes involved in P15(INK4b) regulation during cell cycle, differential display method was applied to compare mRNAs from G(1) synchronized cells of MLIK6, which overexpressed P15(INK4b) gene, and its control MLC2. By using this approach, 15 cDNA fragments that were preferentially expressed in MLIK6 cells, but not in MLC2 cells, were screened out. A novel gene named P15RS was identified with further analysis. Combining the sequence from DD-PCR, homology analysis against EST database and RACE, a 4,404 bp complete cDNA sequence of P15RS was generated. Sequence analysis revealed that P15RS cDNA encoded a 312-amino-acid peptide containing a RAR domain that is involved in regulation of nuclear pre-mRNA, which suggests that P15RS may be a nuclear regulation protein. Genomic sequence analysis demonstrated that human P15RS gene was localized on chromosome 18q12 with seven exons and six introns. Expressing antisense P15RS in MLIK6 cells can up-regulate the expression of cyclinD1 and cyclinE. These data indicate that P15RS may act as a negative regulator in G(1) phase. 相似文献
7.
8.
Mamidipudi V Miller LD Mochly-Rosen D Cartwright CA 《Biochemical and biophysical research communications》2007,352(2):423-430
Cascades of kinases and phosphatases are regulated by selective protein-protein interactions that are essential for signal transduction. Peptide modulators of these interactions have been used to dissect the function of individual components of the signaling cascade, without relying on either the over- or underexpression of proteins. Previously, we identified RACK1 as an endogenous substrate, binding partner and inhibitor of Src tyrosine kinases. Here, we utilized cell-permeable peptides that selectively disrupt or enhance the interaction of RACK1 and Src to further examine the function of RACK1. Our results provide direct physiologic evidence that RACK1 regulates growth of NIH3T3 cells by suppressing the activity of Src and other cell cycle regulators in G1, and delaying entry into S phase. They also demonstrate the potential for using peptide modulators of Src activity as a tool for regulating cell growth, and for designing new strategies for cancer therapy that target specific protein-protein interactions. 相似文献
9.
The relationship between mevalonate and cell cycling was investigated in developing glial cells. Primary cultures of newborn rat brains were serum-depleted (0.1%, vol/vol) for 48 h on days 4-6 in vitro, then returned to 10% calf serum (time 0). After 48 h, 70-80% of the cells were glial fibrillary acidic protein (GFAP)-negative by indirect immunofluorescence; 79 +/- 7% were GFAP-positive after an additional 3 days. Serum shift-up resulted in 12 h of quiescence, and then by 20 h (S phase) in increased proportions of cells synthesizing DNA (from 15 +/- 6% to 75 +/- 4% by bromodeoxyuridine immunofluorescence at 12 h and 20 h, respectively) and rates of DNA synthesis (42 +/- 6 versus 380 +/- 32 cpm/micrograms of protein/h of [3H]thymidine uptake). Additional mevalonate (25 mM) for 30 min at 10 h reversed the inhibition of DNA synthesis apparent with mevinolin (150 microM), an inhibitor of mevalonate synthesis, present from time 0. Cycloheximide added simultaneously with mevalonate prevented this reversal of inhibition. To cause arrest at G1/S, cultures were exposed to hydroxyurea between 10 and 22 h. By 3 h after hydroxyurea removal, bromodeoxyuridine-labeled nuclei increased from 0% to 75 +/- 9%, and DNA synthesis increased 10-fold. Mevinolin failed to inhibit these increases. Thus, primary astroglial precursors stimulated to progress through the cell cycle express a mevalonate requirement in late G1, but before the G1/S transition. The effect of mevalonate was characterized further as being brief (30 min) and as requiring polypeptides. 相似文献
10.
N. Schmitz 《Molecular & general genetics : MGG》1999,261(4-5):716-724
The protein kinase p34cdc2 is required at the onset of DNA replication and for entry into mitosis. The catalytic subunit and its regulatory proteins,
notably the cyclins, are conserved from yeast to man. This suggests that the control mechanisms necessary for progression
through the cell cycle in fission yeast are conserved throughout evolution. This work describes the characterization of a
fission yeast strain that is dependent for cell cycle progression on the activity of the p34CDC2 protein kinase from chicken. The response of the chicken p34CDC2 protein kinase to cell cycle components of fission yeast was examined. Cells expressing the chicken p34CDC2 protein divide at reduced size at 31° C. Cells are temperature sensitive at 35.5° C and die as a result of mitotic catastrophe.
This phenotype can be rescued by delaying cell cycle progression at the G1-S transition by adding low concentrations of hydroxyurea.
Schizosaccharomyces pombe cells that are dependent on chicken p34CDC2 are cold sensitive. At 19° C to 25° C cells arrest in the G1 phase, while traversal of the G2-M transition is not blocked
at low temperature. Expression of chicken p34CDC2 in the cold-sensitive G2-M mutant cdc2A21 suppresses the G1 arrest.
Received: 14 October 1998 / Accepted: 15 March 1999 相似文献
11.
The human erythroleukemic cell line, K562, can be induced to differentiate by the addition of activin A, a newly purified protein belonging to the TGF-beta 1 family. The present studies used flow cytometric cell cycle analysis, indirect immunofluorescence staining of the proliferating cell nuclear antigen (PCNA), and thymidine incorporation assay of cell proliferation to study the effects of activin A on the cell cycle during differentiation in K562 cells. Activin A-treated K562 cells were found to undergo a transient block in cell cycle, temporarily halting progression from G1 to S phase. The latter can be observed after approximately 24 hr of incubation with activin A and then disappears after this early stage of induction of differentiation. Cell cycle kinetics analysis using synchronized K562 cells also confirms that in the presence of activin A, K562 cells progress normally through various phases of cell cycle, except that there is prolongation of the G1 phase between 10 to 24 hr of culture. Furthermore, this transient arrest in G1 is correlated with dephosphorylation of a nucleoprotein, the RB gene product, which occurs within 9-24 hr of incubation with activin A; and phosphorylation of RB protein then develops afterward. In addition, these cell cycle-related events are observed to occur earlier than the accumulation of hemoglobins in K562 cells. It is concluded that transient dephosphorylation of RB protein and prolongation of G1 phase of cell cycle precede and accompany erythroid differentiation caused by activin A and chemical inducers, thus constituting part of the mechanism for induction of differentiation in the erythroleukemia cells. 相似文献
12.
13.
Summary During cell cycle transition from M to G1 phase, micro-tubules (MTs), organized on the perinuclear region, reached the cell cortex. Microfilaments (MFs) were not involved in this process, however, MFs accumulated to form a ring-like structure in the division plane and from there they elongated toward the distal end in the cell cortex. Subsequently, when MTs elongated along the long axis of the cells, towards the distal end, the MTs ran into and then associated with the predeveloped MFs in the cell cortex, suggesting the involvement of MFs in organizing the parallel oriented MTs in the cell cortex. When cortical MTs were formed in the direction transverse to the long axis of cells, the two structures were again closely associated. Therefore, with regards to the determination of the direction of organizing MTs, predeveloped MFs may have guided the orientation of MTs at the initial stage. Disorganization of MFs in this period, by cytochalasins, prevented the organization of cortical MTs, and resulted in the appearance of abnormal MT configurations. We thus demonstrate the involvement of MFs in determining the orientation and organization of cortical MTs, and discuss the possible role of MFs during this process.Abbreviations CB
cytochalasin B
- CD
cytochalasin D
- CLSM
confocal laser scanning microscopy
- DAPI
4,6-diamidino-2-phenylindole
- EF-1
elongation factor 1
- MF
microfilament
- MT
microtubule 相似文献
14.
《DNA Repair》2015
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation. 相似文献