首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.  相似文献   

2.
Selenium deficiency is a major health problem worldwide for about 1 billion people. Bacterial cells usually possess low tolerance to selenite stress and also low ability to reduce high concentrations of toxic selenite. Here, high tolerance to selenite and selenium bioaccumulation capability were developed in mutated clones of probiotic and starter bacteria including Enterococcus faecium, Bifidobacterium animalis ssp. lactis, Lactobacillus casei and Lactococcus lactis ssp. lactis by food-level strain development process and clone selection. All mutant clones possessed increased glutathione concentration and glutathione reductase activity. The selenite treatment increased further these values in L. casei mutant strain pointing at a different selenite reduction pathway and/or stress response in this organism. Considerable conversion of selenite to cell bound selenium forms with a concomitant high biomass production was detected in E. faecium and B. animalis ssp. lactis cultures. Possible application of these strains as food and feed supplements is under investigation.  相似文献   

3.
Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.  相似文献   

4.
《Journal of plant physiology》2014,171(12):1091-1098
We studied the physiological acclimation of growth, photosynthesis and CO2-concentrating mechanism (CCM) in Cylindrospermopsis raciborskii exposed to low (present day; L-CO2) and high (1300 ppm; H-CO2) pCO2. Results showed that under H-CO2 the cell specific division rate (μc) was higher and the CO2- and light-saturated photosynthetic rates (Vmax and Pmax) doubled. The cells’ photosynthetic affinity for CO2 (K0.5CO2) was halved compared to L-CO2 cultures. However, no significant differences were found in dark respiration rates (Rd), pigment composition and light harvesting efficiency (α). In H-CO2 cells, non-photochemical quenching (NPQ), associated with state transitions of the electron transport chain (ETC), was negligible. Simultaneously, a reorganisation of PSII features including antenna connectivity (JconPSIIα), heterogeneity (PSIIα/β) and effective absorption cross sectional area (σPSIIα/β) was observed. In relation to different activities of the CCM, our findings suggest that for cells grown under H-CO2: (1) there is down-regulation of CCM activity; (2) the ability of cells to use the harvested light energy is altered; (3) the occurrence of state transitions is likely to be associated with changes of electron flow (cyclic vs linear) through the ETC; (4) changes in PSII characteristics are important in regulating state transitions.  相似文献   

5.
6.
Nicotine, one of the active components in cigarette smoke, has been described to contribute to the protective effect of smoking in ulcerative colitis (UC) patients. Furthermore, the nicotinic acetylcholine receptor α7 subunit (α7nAChR) expressed on immune cells, is an essential regulator of inflammation. As intestinal epithelial cells also express α7nAChR, we investigated how nicotine could participate in the homeostasis of intestinal epithelial cells. First, using the human adenocarcinoma cell line HT-29, we revealed that nicotine, which triggers an influx of extracellular Ca2+ following α7nAChR stimulation, induces mitochondrial reactive oxygen species (ROS) production associated with a disruption of the mitochondrial membrane potential and endoplasmic reticulum stress. This results in caspase-3 activation, which in turn induces apoptosis. Additionally, we have shown that nicotine induces a PI3-K dependent up-regulation of cyclooxygenase-2 (Cox-2) expression and prostaglandin E2 (PGE2) production. In this context, we suggest that this key mediator participates in the cytoprotective effects of nicotine against apoptosis by stimulating autophagy in colon cancer cells. Our results provide new insight into one potential mechanism by which nicotine could protect from UC and suggest an anti-inflammatory role for the cholinergic pathway at the epithelial cell level.  相似文献   

7.
Accumulated evidence points to a key role for endocannabinoids in cell migration, and here we sought to characterize the role of these substances in early events that modulate communication between endothelial cells and leukocytes. We found that 2-arachidonoylglycerol (2-AG) was able to initiate and complete the leukocyte adhesion cascade, by modulating the expression of selectins. A short exposure of primary human umbilical vein endothelial cells (HUVECs) to 2-AG was sufficient to prime them towards an activated state: within 1 h of treatment, endothelial cells showed time-dependent plasma membrane expression of P- and E-selectins, which both trigger the initial steps (i.e., capture and rolling) of leukocyte adhesion. The effect of 2-AG was mediated by CB1 and CB2 receptors and was long lasting, because endothelial cells incubated with 2-AG for 1 h released the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) for up to 24 h. Consistently, TNF-α-containing medium was able to promote leukocyte recruitment: human Jurkat T cells grown in conditioned medium derived from 2-AG-treated HUVECs showed enhanced L-selectin and P-selectin glycoprotein ligand-1 (PSGL1) expression, as well as increased efficiency of adhesion and trans-migration. In conclusion, our in vitro data indicate that 2-AG, by acting on endothelial cells, might indirectly promote leukocyte recruitment, thus representing a potential therapeutic target for treatment of diseases where impaired endothelium/leukocyte interactions take place.  相似文献   

8.
Mechanisms associated with the progression of non-alcoholic fatty liver disease (NAFLD) remain unclear. We attempted to identify the pattern of altered gene expression at different time points in a high fat diet (HFD)-induced NAFLD mouse model. The early up-regulated genes are mainly involved in the innate immune responses, while the late up-regulated genes represent the inflammation processes. Although recent studies have shown that microRNAs play important roles in hepatic metabolic functions, the pivotal role of microRNAs in the progression of NAFLD is not fully understood. We investigated the functions of miR-451, which was identified as a target gene in the inflammatory process in NAFLD. miR-451 expression was significantly decreased in the palmitate (PA)-exposed HepG2 cells and in liver tissues of HFD-induced non-alcoholic steatohepatitis (NASH) mice. Its decreased expressions were also observed in liver specimens of NASH patients. In vitro analysis of the effect of miR-451 on proinflammatory cytokine provided evidence for negative regulation of PA-induced interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) production. Furthermore, miR-451 over-expression inhibited translocation of the PA-induced NF-κB p65 subunit into the nucleus. Our result showed that Cab39 is a direct target of miRNA-451 in steatotic cells. Further study showed that AMPK activated through Cab39 inhibits NF-κB transactivation induced in steatotic HepG2 cells. miR-451 over-expression in steatotic cells significantly suppressed PA-induced inflammatory cytokine. These results provide new insights into the negative regulation of miR-451 in fatty acid-induced inflammation via the AMPK/AKT pathway and demonstrate potential therapeutic applications for miR-451 in preventing the progression from simple steatosis to severely advanced liver disease.  相似文献   

9.
10.
11.
Dual oxidase 2 enzyme is a member of the reactive oxygen species-generating cell membrane NADPH oxidases involved in mucosal innate immunity. It is not known if the biological activity of dual oxidase 2 is mediated by direct bacterial killing by reactive oxygen species produced by the enzyme or by the same reactive oxygen species acting as second messengers that stimulate novel gene expression. To uncover the role of reactive oxygen species and dual oxidases as signaling molecules, we have dissected the pathway triggered by epidermal growth factor to induce mucins, the principal protective components of gastrointestinal mucus. We show that dual oxidase 2 is essential for selective epidermal growth factor induction of the transmembrane MUC3 and the secreted gel-forming MUC5AC mucins. Reactive oxygen species generated by dual oxidase 2 stabilize tyrosine phosphorylation of epidermal growth factor receptor and induce MUC3 and MUC5AC through persistent activation of extracellular signal-regulated kinases 1/2–protein kinase C. Knocking down dual oxidase 2 by selective RNA targeting (siRNA) reduced epidermal growth factor receptor phosphorylation, and MUC3 and MUC5AC gene expression. Extracellular reactive oxygen species produced by dual oxidase 2, upon stimulation by epidermal growth factor, stabilize epidermal growth factor receptor phosphorylation and activate extracellular signal-regulated kinases 1/2–protein kinase C which induce MUC5AC and MUC3. Extracellular reactive oxygen species produced by dual oxidase 2 that are known to directly kill bacteria, also contribute to the maintenance of the epidermal growth factor-amplification loop, which induces mucins. These data suggest a new function of dual oxidase 2 protein in the luminal protection of the gastrointestinal tract through the induction of mucin expression by growth factors.  相似文献   

12.
13.
《Phytomedicine》2014,21(4):529-533
We investigated whether aqueous extract of the root of Platycodon grandiflorum A. de Candolle (APG), platycodinD3 and deapi-platycodin significantly affect the production and secretion of airway mucin using in vivo and in vitro experimental models. Effect of APG was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. Confluent NCI-H292 cells were pretreated with platycodinD3 or deapi-platycodin for 30 min and then stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 h. The MUC5AC mucin production and secretion were measured by ELISA. The results were as follows: (1) APG stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; (2) platycodinD3 and deapi-platycodin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively; (3) however, platycodinD3 and deapi-platycodin did not inhibit but stimulated the secretion of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. This result suggests that aqueous extract of P. grandiflorum A. de Candolle and the two natural products derived from it, platycodinD3 and deapi-platycodin, can regulate the production and secretion of airway mucin and, at least in part, explains the traditional use of aqueous extract of P. grandiflorum A. de Candolle as expectorants in diverse inflammatory pulmonary diseases.  相似文献   

14.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

15.
It has been very recently shown how naturally occurring oxyprenylated coumarins are effective modulators of melanogenesis. In this short communication we wish to generalize the potentialities as skin tanning or whitening agents of a wider panel of natural and semisynthetic aromatic compounds, including coumarins, cinnamic and benzoic acids, cinnamaldehydes, benzaldehyde, and anthraquinone derivatives. A total number of 43 compounds have been tested assaying their capacity to inhibit or stimulate melanin biosynthesis in cultured murine Melan A cells. The wider number of chemicals herein under investigation allowed to depict a detailed structure-activity relationship, as the following: (a) benzoic acid derivatives are slightly pigmenting agent, for which the effect is more pronounced in compounds with longer O-side chains; (b) independently from the type of substitution, cinnamic acids are able to increase melanin biosynthesis, while benzaldehydes are able to decrease it; (c) coumarins with a 3,3-dimethylallyl or shorter skeletons as substituents in position 7 are tanning agents, while coumarins with farnesyloxy groups are whitening ones; (d) double oxyprenylation in position 6 and 7 and 3,3-dimethylallyl or geranyl skeletons have slight depigmenting capacities, while farnesyl skeletons tend to marginally increase the tanning effect; (e) the presence of electron withdrawing groups (acetyl, COOH, and -Cl) and geranyl or farnesyl oxyprenylated chains respectively in positions 3 and 7 of the coumarin nucleus lead to a whitening effect, and finally (f) oxyprenylated anthraquinones have only a weak depigmenting capacity.  相似文献   

16.
The filamentous cyanobacterium Planktothrix rubescens produces secondary metabolites called microcystins (MC) that are potent toxins for most eukaryotes, including zooplankton grazers, cattle and humans. P. rubescens occurs in many deep and thermally stratified lakes throughout Europe. In Lake Zurich (Switzerland), it re-appeared in the 1970s concomitant with decreasing eutrophication. Since then, P. rubescens has become the dominant species in this major drinking water reservoir, where it forms massive metalimnetic blooms during late summer. These cyanobacteria harbor subpopulations of non-MC producers, but little is known about the environmental factors affecting the success of such genotypes. The non-MC-producing subpopulation of P. rubescens was studied using a quantitative real-time PCR (qPCR) assay on the MC synthetase (mcy) gene cluster that targets a deletion on the mcyH and mcyA genes, which inactivates MC biosynthesis. Two complementary qPCR assays were used to assess the total population abundance (based on the 16S rDNA gene) and the mcy gene copy number (based on a conserved region in the adenylation domain of the mcyB gene). The objective was to evaluate the seasonal patterns of the share of non-MC-producing filaments in the total P. rubescens population. The mcyHA mutants were present in low proportions (up to 14%) throughout the year. Their highest relative abundances occurred during the winter mixis, when total concentrations of P. rubescens were minimal. The MC deficient mutants seemed to better survive in sparse populations, possibly because of lower grazing pressure and a consequently reduced need for MC-mediated protection. Alternatively, the mutants might cope better with the sub-optimal, stressful pressure and light conditions during the winter mixis. Altogether, our results suggest that subtle trade-offs might seasonally determine the proportions of non-MC producers within P. rubescens populations.  相似文献   

17.
《IRBM》2014,35(1):46-52
BackgroundQuantified gait analysis is a rising technology used increasingly to assess motor disorders. Normal reference data are required in order to evaluate patients, but there are no reference data available for the Tunisian healthy population.AimTo assess the features of normal Tunisian gait pattern, and examine the intrinsic reliability of spatio-temporal, kinematic and kinetic parameters within a new specific reference database.MethodsEighteen healthy active-young adults (age: 23.30 ± 2.54 years, height: 1.78 ± 0.04 m and, weight: 70.00 ± 4.80 kg) have participated to five trials of step gait where the dominant lower limb were recorded. Two over the five trials were randomly selected to be further analyzed. Twenty-three spatio-temporal, kinematic and kinetic parameters determined from 3-dimensional gait analysis. The intrinsic reliability was examined for each variable and our results were compared with those available in the literature.ResultsTwelve over 23 parameters have an excellent intrinsic reliability (P > 0.05, ICC > 0.9 and SEM < 5% of the grand mean). There are similarities with other studies (P < 0.05) but we noticed the existence of some specificity (the height of hip extension peak and the low cadence of gait) that could characterize the Tunisian population.ConclusionA specific reference database of the gait cycle has been established for healthy Tunisian active-young adults and excellent inter-trial reliability may be observed for different variables.  相似文献   

18.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   

19.
20.
In a birth cohort living in Chitwan Valley, lowland Nepal, we have previously reported inverse associations between in utero levels of lead (Pb), arsenic (As) and neurodevelopment at birth measured by the Brazelton Neonatal Behavioral Assessment Scale, third edition (NBAS III). In the present paper, a follow-up of the same cohort was made on 24-month-old infants regarding the neurodevelopmental effects of these metals, taking the postnatal environment into account. In total, the same100 mother-infant pairs as the previous study, whose Pb, As, and Zn concentrations in cord blood were known, were recruited. Postnatal raising environment was evaluated using the Home Observation for Measurement of Environment (HOME) scale. Neurodevelopment of children at 24 months of age (n = 74) was assessed using the Bayley Scale of Infant Development, Second Edition (BSID II). Multivariable regression adjusting for covariates was performed to determine the associations of in utero levels of toxic and essential elements and the home environment with neurodevelopment scores. Unlike the NBAS III conducted for newborns, none of the BSID II cluster scores in 24-month-old infants were associated with cord blood levels of Pb, As, and Zn. The total HOME score was positively associated with the mental development scale (MDI) score (coefficient = 0.67, at 95% CI = 0.03 to 1.31). In this cohort, a detrimental effect of in utero Pb and As on neurodevelopmental indicators observed at birth disappeared at 24 months, while an association between neurodevelopment and home environment continued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号