首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   

2.
《Phytomedicine》2014,21(12):1504-1508
PurposeThe effects of Portulaca oleracea (Po) lyophilized aqueous extract were determined on the serum high-density lipoproteins (HDL2 and HDL3) amounts and composition, as well as on lecithin: cholesterol acyltansferase (LCAT) activity.MethodsMale Wistar rats (n = 12) were fed on 1% cholesterol-enriched diet for 10 days. After this phase, hypercholesterolemic rats (HC) were divided into two groups fed the same diet supplemented or not with Portulaca oleracea (Po-HC) (0.5%) for four weeks.ResultsSerum total cholesterol (TC) and triacylglycerols (TG), and liver TG values were respectively 1.6-, 1.8-, and 1.6-fold lower in Po-HC than in HC group. Cholesterol concentrations in LDL-HDL1, HDL2, and HDL3 were respectively 1.8, 1.4-, and 2.4-fold decreased in Po-HC group. HDL2 and HDL3 amounts, which were the sum of apolipoproteins (apos), TG, cholesteryl esters (CE), unesterified cholesterol (UC), and phospholipids (PL) contents, were respectively 4.5-fold higher and 1.2-fold lower with Po treatment. Indeed, enhanced LCAT activity (1.2-fold), its cofactor-activator apo A-I (2-fold) and its reaction product HDL2-CE (2.1-fold) were observed, whereas HDL3-PL (enzyme substrate) and HDL3-UC (acyl group acceptor) were 1.2- and 2.4-fold lower.ConclusionPortulaca oleracea reduces triglyceridemia, cholesterolemia, and improves reverse cholesterol transport in rat fed enriched-cholesterol diet, contributing to anti-atherogenic effects.  相似文献   

3.
It has been shown that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH). Norepinephrine (NE) levels are increased by chemoreflex-dependent sympathetic overactivation and involved in pulmonary vascular remodeling. However, the underlying mechanisms of the remodeling induced by NE are poorly understood. In this study, we found that, in vivo, the expression of tyrosine hydroxylase and the concentration of plasma NE were increased in PAH rats compared with normal rats. Increases in ventricular hypertrophy and medial width of the pulmonary arteries were reversed by prazosin, α1-adrenoceptor (α1-AR) antagonists, in PAH rats. Elevated expression of α1D-AR was detected in PAH rats. In addition, prazosin reduced the increasing expression of PCNA, CyclinA and CyclinE induced by hypoxia. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of NE on proliferation of pulmonary artery smooth muscle cells (PASMCs). We revealed that NE promoted PASMCs viability, increased the expression of PCNA, CyclinA and CyclinE, made more cells from G0/G1 phase to G2/M + S phase and enhanced the microtubule formation. Above NE-induced changes could be suppressed by BMY 7378, an inhibitor of α1D-AR. Furthermore, ERK-1/2 pathway was activated by NE. U0126, a specific inhibitor for ERK-1/2, attenuated the NE-induced proliferation of PASMCs under normoxia and hypoxia. Taken together, our results suggest that NE which stimulates α1D-AR promotes proliferation of PASMCs and the effect is, at least in part, mediated via the ERK-1/2 pathway.  相似文献   

4.
Glycine soja, also called wild soybean, is the wild ancestor of domesticated soybean (Glycine max), and one of the world's major cultivated crops. Wild soybean is a valuable resource for the breeding of cultivated soybean and harbors useful genes or agronomic traits. To use and conserve this valuable resource, we conducted a study to evaluate the genetic diversity and population structure of wild soybean using the sequencing data of two nuclear loci (AF105221 and PhyB) and one chloroplast locus (trnQ-rps16) of more than 600 individuals representing 53 populations throughout the natural distribution range. The results showed that most of the variation was found within the populations and groups, but significant genetic differentiation was also detected among different eco-geographical groups. Correlations between genetic and geographical distance at all the loci were consistent with the isolation by distance gene flow model. G. soja exhibited the highest genetic diversity in middle and downstream of Yangzi River (MDYR) region, followed by North East China (NEC), and was the lowest in North West China (NWC). We concluded that both in situ and ex situ conservation strategies required for wild soybean populations, especially which are native to MDYR and NEC regions.  相似文献   

5.
Oxidative-stress-driven lipid peroxidation (LPO) is involved in the pathogenesis of several human diseases, including cancer. LPO products react with cellular proteins changing their properties, and with DNA bases to form mutagenic etheno-DNA adducts, removed from DNA mainly by the base excision repair (BER) pathway.One of the major reactive aldehydes generated by LPO is 4-hydroxy-2-nonenal (HNE). We investigated the effect of HNE on BER enzymes in human cells and in vitro. K21 cells pretreated with physiological HNE concentrations were more sensitive to oxidative and alkylating agents, H2O2 and MMS, than were untreated cells. Detailed examination of the effects of HNE on particular stages of BER in K21 cells revealed that HNE decreases the rate of excision of 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC), but not of 8-oxoguanine. Simultaneously HNE increased the rate of AP-site incision and blocked the re-ligation step after the gap-filling by DNA polymerases. This suggested that HNE increases the number of unrepaired single-strand breaks (SSBs) in cells treated with oxidizing or methylating agents. Indeed, preincubation of cells with HNE and their subsequent treatment with H2O2 or MMS increased the number of nuclear poly(ADP-ribose) foci, known to appear in cells in response to SSBs. However, when purified BER enzymes were exposed to HNE, only ANPG and TDG glycosylases excising ɛA and ɛC from DNA were inhibited, and only at high HNE concentrations. APE1 endonuclease and 8-oxoG-DNA glycosylase 1 (OGG1) were not inhibited. These results indicate that LPO products exert their promutagenic action not only by forming DNA adducts, but in part also by compromising the BER pathway.  相似文献   

6.
The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used.Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis–Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 μM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 μM). But concurrently the Vm value of the tumor samples was 60–80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin β-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides.The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase.Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed.Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.  相似文献   

7.
The filamentous cyanobacterium Planktothrix rubescens produces secondary metabolites called microcystins (MC) that are potent toxins for most eukaryotes, including zooplankton grazers, cattle and humans. P. rubescens occurs in many deep and thermally stratified lakes throughout Europe. In Lake Zurich (Switzerland), it re-appeared in the 1970s concomitant with decreasing eutrophication. Since then, P. rubescens has become the dominant species in this major drinking water reservoir, where it forms massive metalimnetic blooms during late summer. These cyanobacteria harbor subpopulations of non-MC producers, but little is known about the environmental factors affecting the success of such genotypes. The non-MC-producing subpopulation of P. rubescens was studied using a quantitative real-time PCR (qPCR) assay on the MC synthetase (mcy) gene cluster that targets a deletion on the mcyH and mcyA genes, which inactivates MC biosynthesis. Two complementary qPCR assays were used to assess the total population abundance (based on the 16S rDNA gene) and the mcy gene copy number (based on a conserved region in the adenylation domain of the mcyB gene). The objective was to evaluate the seasonal patterns of the share of non-MC-producing filaments in the total P. rubescens population. The mcyHA mutants were present in low proportions (up to 14%) throughout the year. Their highest relative abundances occurred during the winter mixis, when total concentrations of P. rubescens were minimal. The MC deficient mutants seemed to better survive in sparse populations, possibly because of lower grazing pressure and a consequently reduced need for MC-mediated protection. Alternatively, the mutants might cope better with the sub-optimal, stressful pressure and light conditions during the winter mixis. Altogether, our results suggest that subtle trade-offs might seasonally determine the proportions of non-MC producers within P. rubescens populations.  相似文献   

8.
The study assesses the effects of dietary mannan oligosaccharides (MOS) in European sea bass (Dicentrarchus labrax) posterior intestinal lipid class composition and its possible relation to the potential prostaglandins production and Gut Associated Lymphoid Tissue (GALT) stimulation.Fish were fed 4 g kg?1 MOS (Bio-Mos® Aquagrade, Alltech, Inc., USA) for eight weeks. Fish fed MOS presented higher (P ≤ 0.05) weight gain, total length, and specific and relative growth rates than fish fed the control diet. Stimulated posterior gut of fish fed MOS showed higher (P ≤ 0.05) prostaglandins production than fish fed the control diet. Lipid class analyses of posterior gut revealed a reduction (P ≤ 0.05) in the neutral lipid fraction in fish fed MOS compared to fish fed the control diet, particularly due to a reduction (P ≤ 0.05) in triacylglycerols content. The polar lipid fraction increased (P ≤ 0.05) in fish fed MOS compared to fish fed the control diet, mainly due to an increase (P ≤ 0.05) in phosphatidylethanolamine and phosphatidylcoline contents.Light microscopy of posterior gut revealed increased number or goblet cells as well as higher level of infiltrated eosinophilic granulocytes for fish fed MOS. Transmission electron microscopy qualitative observations revealed a better preserved cytoarchitecture of the intestinal epithelial barrier in the posterior gut of fish fed MOS. Posterior gut of fish fed MOS presented more densely packed non-damaged enterocytes, better preserved tight junctions structure, healthier and more organized microvilli, and a higher presence of infiltrated lymphocytes and granulocytes compared fish fed the control diet.The present study indicates that dietary MOS enhances European sea bass posterior gut epithelial defense by increasing membrane polar lipids content in relation to a stimulation of the eicosanoid cascade and GALT, promoting posterior gut health status.  相似文献   

9.
Accumulated evidence points to a key role for endocannabinoids in cell migration, and here we sought to characterize the role of these substances in early events that modulate communication between endothelial cells and leukocytes. We found that 2-arachidonoylglycerol (2-AG) was able to initiate and complete the leukocyte adhesion cascade, by modulating the expression of selectins. A short exposure of primary human umbilical vein endothelial cells (HUVECs) to 2-AG was sufficient to prime them towards an activated state: within 1 h of treatment, endothelial cells showed time-dependent plasma membrane expression of P- and E-selectins, which both trigger the initial steps (i.e., capture and rolling) of leukocyte adhesion. The effect of 2-AG was mediated by CB1 and CB2 receptors and was long lasting, because endothelial cells incubated with 2-AG for 1 h released the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) for up to 24 h. Consistently, TNF-α-containing medium was able to promote leukocyte recruitment: human Jurkat T cells grown in conditioned medium derived from 2-AG-treated HUVECs showed enhanced L-selectin and P-selectin glycoprotein ligand-1 (PSGL1) expression, as well as increased efficiency of adhesion and trans-migration. In conclusion, our in vitro data indicate that 2-AG, by acting on endothelial cells, might indirectly promote leukocyte recruitment, thus representing a potential therapeutic target for treatment of diseases where impaired endothelium/leukocyte interactions take place.  相似文献   

10.
Cancer risk and radiation sensitivity are often associated with alterations in DNA repair, cell cycle, or apoptotic pathways. Interindividual variability in mutagen or radiation sensitivity and in cancer susceptibility may also be traced back to polymorphisms of genes affecting e.g. DNA repair capacity. We studied possible associations between 70 polymorphisms of 12 DNA repair genes with basal and initial DNA damage and with repair thereof. We investigated DNA damage induced by ionizing radiation in lymphocytes isolated from 177 young lung cancer patients and 169 cancer-free controls. We also sought replication of our findings in an independent sample of 175 families (in total 798 individuals). DNA damage was assessed by the Olive tail moment (OTM) of the comet assay. DNA repair capacity (DRC) was determined for 10, 30 and, 60 min of repair.Genes involved in the single-strand-repair pathway (SSR; like XRCC1 and MSH2) as well as genes involved in the double-strand-repair pathway (DSR; like RAD50, XRCC4, MRE11 and ATM) were found to be associated with DNA damage. The most significant association was observed for marker rs3213334 (p = 0.005) of XRCC1 with basal DNA damage (B), in both cases and controls. A clear additive effect on the logarithm of OTM was identified for the marker rs1001581 of the same LD-block (p = 0.039): BCC = −1.06 (95%-CI: −1.16 to −0.96), BCT = −1.02 (95%-CI: −1.11 to −0.93) and BTT = −0.85 (95%-CI: −1.01 to −0.68). In both cases and controls, we observed significantly higher DNA basal damage (p = 0.007) for carriers of the genotype AA of marker rs2237060 of RAD50 (involved in DSR). However, this could not be replicated in the sample of families (p = 0.781). An alteration to DRC after 30 min of repair with respect to cases was observed as borderline significant for marker rs611646 of ATM (involved in DSR; p = 0.055), but was the most significant finding in the sample of families (p = 0.009).Our data indicate that gene variation impacts measurably on DNA damage and repair, suggesting at least a partial contribution to radiation sensitivity and lung cancer susceptibility.  相似文献   

11.
《Phytomedicine》2014,21(8-9):1048-1052
Chenopodium ambrosioides have been used during centuries by native people to treat parasitic diseases.Aims of the studyTo compare the in vivo anti-leishmanial activity of the essential oil (EO) from C. ambrosioides and its major components (ascaridole, carvacrol and caryophyllene oxide).Materials and methodsAnti-leishmanial effect was evaluated in BALB/c mice infected with Leishmania amazonensis and treated with the EO, main compounds and artificial mix of pure components by intralesional route at 30 mg/kg every 4 days during 14 days. Diseases progression and parasite burden in infected tissues were determined.ResultsEO prevented lesion development compared (p < 0.05) with untreated animals and treated with vehicle. In addition, the efficacy of EO was also statistically superior (p < 0.05) compared with the glucantime-treated animals. No potential effects were observed with pure components treatment. Mix of pure compounds cause death of animals after 3 days of treatment.ConclusionsOur results demonstrate the superiority of EO against experimental cutaneous leishmaniasis caused by L. amazonensis.  相似文献   

12.
Here we report identification of the lkh1 gene encoding a LAMMER kinase homolog (Lkh1) from a screen for DNA repair-deficient mutants in Ustilago maydis. The mutant allele isolated results from a mutation at glutamine codon 488 to a stop codon that would be predicted to lead to truncation of the carboxy-terminal kinase domain of the protein. This mutant (lkh1Q488*) is highly sensitive to ultraviolet light, methyl methanesulfonate, and hydroxyurea. In contrast, a null mutant (lkh1Δ) deleted of the entire lkh1 gene has a less severe phenotype. No epistasis was observed when an lkh1Q488* rad51Δ double mutant was tested for genotoxin sensitivity. However, overexpressing the gene for Rad51, its regulator Brh2, or the Brh2 regulator Dss1 partially restored genotoxin resistance of the lkh1Δ and lkh1Q488* mutants. Deletion of lkh1 in a chk1Δ mutant enabled these double mutant cells to continue to cycle when challenged with hydroxyurea. lkh1Δ and lkh1Q488* mutants were able to complete the meiotic process but exhibited reduced heteroallelic recombination and aberrant chromosome segregation. The observations suggest that Lkh1 serves in some aspect of cell cycle regulation after DNA damage or replication stress and that it also contributes to proper chromosome segregation in meiosis.  相似文献   

13.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

14.
《Journal of plant physiology》2014,171(18):1732-1739
Legumes have the unique ability to fix atmospheric nitrogen (N2) via symbiotic bacteria in their nodules but depend heavily on phosphorus (P), which affects nodulation, and the carbon costs and energy costs of N2 fixation. Consequently, legumes growing in nutrient-poor ecosystems (e.g., sandstone-derived soils) have to enhance P recycling and/or acquisition in order to maintain N2 fixation. In this study, we investigated the flexibility of P recycling and distribution within the nodules and their effect on N nutrition in Virgilia divaricata Adamson, Fabaceae, an indigenous legume in the Cape Floristic Region of South Africa. Specifically, we assessed tissue elemental localization using micro-particle-induced X-ray emission (PIXE), measured N fixation using nutrient concentrations derived from inductively coupled mass-spectrometry (ICP-MS), calculated nutrient costs, and determined P recycling from enzyme activity assays. Morphological and physiological features characteristic of adaptation to P deprivation were observed for V. divaricata. Decreased plant growth and nodule production with parallel increased root:shoot ratios are some of the plastic features exhibited in response to P deficiency. Plants resupplied with P resembled those supplied with optimal P levels in terms of growth and nutrient acquisition. Under low P conditions, plants maintained an increase in N2-fixing efficiency despite lower levels of orthophosphate (Pi) in the nodules. This can be attributed to two factors: (i) an increase in Fe concentration under low P, and (ii) greater APase activity in both the roots and nodules under low P. These findings suggest that V. divaricata is well adapted to acquire N under P deficiency, owing to the plasticity of its nodule physiology  相似文献   

15.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

16.
Habitat loss via human activity has fragmented populations of the golden snub-nosed monkey (Rhinopithecus roxellana), and thus affected patterns of gene flow. We investigated in-depth a single troop in the Qinling Mountains, central China, two major histocompatibility complex (MHC) class II loci, DQA1 and DQB1, and compared the resulting data with data from troops from the wider Qinling Mountains region. We found that a novel DQB1 allele was only present in the study troop and relatively few divergent alleles at the DQA1 and DQB1 loci were present compared with the wider population. The inbreeding coefficient (Fis) at the MHC region was lower than previous measurements, which may have reflected different sampling strategies. However, R. roxellana has relatively high diversity in MHC genes, even though it has probably experienced serious past population bottlenecks and reduced gene flow between populations. We also found that some alleles present in the wider population had been lost in the study troop, and suggest that conservation management strategies be implemented to increase gene flow between troops in order to increase genetic variation.  相似文献   

17.
《Phytomedicine》2014,21(4):529-533
We investigated whether aqueous extract of the root of Platycodon grandiflorum A. de Candolle (APG), platycodinD3 and deapi-platycodin significantly affect the production and secretion of airway mucin using in vivo and in vitro experimental models. Effect of APG was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. Confluent NCI-H292 cells were pretreated with platycodinD3 or deapi-platycodin for 30 min and then stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 h. The MUC5AC mucin production and secretion were measured by ELISA. The results were as follows: (1) APG stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; (2) platycodinD3 and deapi-platycodin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively; (3) however, platycodinD3 and deapi-platycodin did not inhibit but stimulated the secretion of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. This result suggests that aqueous extract of P. grandiflorum A. de Candolle and the two natural products derived from it, platycodinD3 and deapi-platycodin, can regulate the production and secretion of airway mucin and, at least in part, explains the traditional use of aqueous extract of P. grandiflorum A. de Candolle as expectorants in diverse inflammatory pulmonary diseases.  相似文献   

18.
The study of hemolymph melanization in Lepidoptera has contributed greatly to our understanding of its role in insect immunity. Manduca sexta in particular has been an excellent model for identifying the myriad components of the phenoloxidase (PO) cascade and their activation through exposure to pathogen-associated molecular patterns (PAMPs). However, in a process that is not well characterized or understood, some insect species rapidly melanize upon wounding in the absence of added PAMPs. We sought to better understand this process by measuring wound-induced melanization in four insect species. Of these, only plasma from late 5th instar M. sexta was unable to melanize, even though each contained millimolar levels of the putative melanization substrate tyrosine (Tyr). Analysis of Tyr metabolism using substrate-free plasmas (SFPs) from late 5th instar larvae of each species showed that only M. sexta SFP failed to melanize with added Tyr. In contrast, early instar M. sexta larvae exhibited wound-induced melanization and Tyr metabolism, and SFPs prepared from these larvae melanized in the presence of Tyr. Early instar melanization in M. sexta was associated with the formation of a high mass protein complex that could be observed enzymatically in native gels or by PO-specific immunoblotting. Topical treatment of M. sexta larvae with the juvenile hormone (JH) analog methoprene delayed pupation and increased melanizing ability late in the instar, thus linking development with immunity. Our results demonstrate that melanization rates are highly variable in Lepidoptera, and that developmental stage can be an important factor for melanization within a species. More specifically, we show that the physiological substrate for melanization in M. sexta is Tyr, and that melanization is associated with the formation of a PO-containing protein complex.  相似文献   

19.
《Microbiological research》2014,169(11):835-843
The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10 μF capacitance, 300 Ω resistance, 4 kV/cm field strength, with 1 μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive–negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum.  相似文献   

20.
Genetic diversity analysis was conducted on 80 individuals of 4 populations of non-bred Pyropia haitanensis by simple sequence repeat (SSR) method. Using 15 pairs of microsatellite primers, 37 polymorphic loci were amplified, representing 94.9% of all loci. At the population level, the percentage of polymorphic bands (P) and polymorphism information content (PIC) were 66.67–84.62% and 0.481–0.488, with average value at 73.72% and 0.483, respectively. Expected heterozygosity (He) and Shannon's information index (I) were 0.279 and 0.434, respectively, at the species level, and 0.233 and 0.356 at population level. According to the coefficient of gene differentiation (GST), a large proportion of genetic variance (83.6%) of P. haitanensis was among individuals within populations, only 16.4% genetic variance was among populations, which was identified with the moderate gene flow value (Nm = 2.542). UPGMA clustered the 4 populations into 3 groups, and no significant correlation was found between the genetic distance and the corresponding geographic distance among the populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号