首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the knowledge about cyanobacteria toxin production is traditionally associated with planktonic cyanobacterial blooms. However, some studies have been showing that benthic cyanobacteria can produce cyanotoxins. According to this, we aimed to evaluate the production of microcystins and saxitoxins in benthic cyanobacteria isolated from aquatic ecosystems in the Northeast of Brazil and to use a polyphasic approach for their identification. Forty-five clonal strains were isolated from rivers and water supply reservoirs, and identified using morphological and molecular phylogenetic characteristics. In order to evaluate the toxins production, the strains were screened for genes involved in the biosynthesis of microcystins and saxitoxins, positive results were confirmed and cyanotoxins quantified using HPLC. Eight species were identified belonging to the Phormidiaceae, Pseudanabaenaceae and Nostocaceae families. This is the first study in Brazil that shows that strains from the Geitlerinema genus correspond to at least three phylogenetic lineages, which possibly correspond to three distinct species to be subsequently reclassified. The strains that showed one of the genes involved in the cyanotoxins production were analyzed by HPLC and Geitlerinema amphibium, Geitlerinema lemmermannii, Cylindrospermum stagnale and Phormidium uncinatum were identified as producing one or more saxitoxins variants. Thus, this is the first report of saxitoxins production for those first three species and the first report in Brazil for P. uncinatum.  相似文献   

2.
Lake Naivasha, an important inland water ecosystem and a crucial freshwater resource in the Great African Rift Valley, has displayed clear signals of degradation in recent decades. We studied the phytoplankton composition and biomass levels in the period 2001–2013 and noted a progressive increase in the occurrence of potentially toxic cyanobacteria. Analyses for the presence of cyanotoxins such as microcystins (MC), cylindrospermopsin (CYN) and anatoxin-a (ATX-a) were carried out on samples collected in 2008–2013. Among the cyanotoxins tested, low concentrations of MC were detected in the lake. This is the first record of the occurrence of MC in Lake Naivasha. For the first time, molecular phylogenetic investigations of field clones of cyanobacteria from Lake Naivasha were carried out to establish the taxa of the dominant species. Amplification of the aminotrasferase (AMT) domain responsible for cyanotoxin production confirmed the presence of the mcyE gene belonging to the microcystin synthesis gene cluster in field samples containing Microcystis and Planktothrix species. These findings suggest that toxin producing cyanobacteria could become a threat to users of this over-exploited tropical lake in the near future.  相似文献   

3.
Cyanobacterial blooms have increased in freshwater ecosystems worldwide in the last century, mostly resulting from eutrophication and climate change. These blooms represent serious threats to environmental and human health because of the production of harmful metabolites, called cyanotoxins. Like many countries, Egypt has been plagued with cyanobacterial blooms in most water sources, including the Nile River, irrigation canals, lakes and fishponds. However, the data about cyanotoxins produced in these blooms are limited. Only two types of cyanotoxins, microcystins and cylindrospermopsin, have been identified and characterised, mainly from Microcystis and Cylindrospermopsis blooms. The data revealed the presence of microcystins in raw and treated drinking waters at concentrations (0.05–3.8 µg l?1), exceeding the WHO limit (1 µg l?1) in some drinking water treatment plants. In addition, Nile tilapia Oreochromis niloticus caught from ponds containing heavy cyanobacterial blooms have accumulated considerable amounts of cyanotoxins in their edible tissues. The data presented here could be the catalyst for the establishment of a monitoring and management programme for harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters. This review also elucidates the important research gaps and possible avenues for future research on cyanobacterial blooms and cyanotoxins in Egypt.  相似文献   

4.
Dissolved microcystins (MC) are regularly present in water dominated by microcystin-producing, bloom-forming cyanobacteria. In vitro experiments with environmentally feasible concentrations (5 × 10−7 M) of the three most common microcystins, MC-LR, -RR, and -YR, revealed that they influence the metabolism of different representative phytoplanktons. At light intensities close to the cyanobacterial bloom environment (50 μmol m−2 s−1), they produce morphological and physiological changes in both microcystin-producing and nonproducing Microcystis aeruginosa strains, and also have similar effects on the green alga Scenedesmus quadricauda that is frequently present in cyanobacterial blooms. All three microcystin variants tested induce cell aggregation, increase in cell volume, and overproduction of photosynthetic pigments. All three effects appear to be related to each other, but are not necessarily caused by the same mechanism. The biological activity of microcystins toward the light-harvesting complex of photobionts can be interpreted as a signal announcing the worsening of light conditions due to the massive proliferation of cyanobacteria. Although the function of microcystins is still unknown, it is evident that they have numerous effects on phytoplankton organisms in nature. These effects depend on the individual organism as well as on the various intracellular and extracellular signaling pathways. The fact that dissolved microcystins also influence the physiology of microcystin-producing cyanobacteria leads us to the conclusion that the role of microcystins in the producing cells differs from their role in the water environment.  相似文献   

5.
Monitoring of cyanobacteria and their toxins are traditionally conducted by cell counting, chlorophyll-a (chl-a) determination and cyanotoxin measurements, respectively. These methods are tedious, costly, time consuming, and insensitive to rapid changes in water quality and cyanobacterial abundance. We have applied and tested an online phycocyanin (PC) fluorescence probe for rapid monitoring of cyanobacteria in the Macau Storage Reservoir (MSR) that is experiencing cyanobacterial blooms. The relationships among cyanobacterial abundance, biovolume, cylindrospermopsin concentration, and PC fluorescence were analyzed using both laboratory and in-the-field studies. The performance of the probe was compared with traditional methods, and its advantages and limitations were assessed in pure and mixed cyanobacterial cultures in the laboratory. The proposed techniques successfully estimated the species including Microcystis and Cylindrospermopsis, two toxic species recently observed in the MSR. During February–November, 2010, the PC probe detected high correlations between PC and cell numbers (R 2 = 0.71). Unlike the chl-a content, which indicates only the total algal biomass, the PC pigment specifically indicates cyanobacteria. These results support the PC parameter as a reliable estimate of cyanobacterial cell number, especially in freshwater bodies where the phytoplankton community and structure are stable. Thus, the PC probe is potentially applicable to online monitoring of cyanobacteria.  相似文献   

6.
The frequency of cyanobacterial proliferations in fresh waters is increasing worldwide and the presence of associated cyanotoxins represent a threat for ecosystems and human health. While the occurrence of microcystin (MC), the most widespread cyanotoxin, is well documented in freshwaters, only few studies have examined its occurrence in estuarine waters. In this study we evaluated the transfer of cyanobacteria and cyanotoxins along a river continuum from a freshwater reservoir through an interconnecting estuary to the coastal area in Brittany, France. We sampled regularly over 2 years at 5 stations along the river continuum and analysed for phytoplankton and cyanotoxins, together with physico-chemical parameters. Results show that cyanobacteria dominated the phytoplanktonic community with high densities (up to 2 × 106 cells mL−1) at the freshwater sites during the summer and autumn periods of both years, with a cell transfer to estuarine (up to 105 cells mL−1) and marine (2 × 103 cells mL−1) sites. While the temporal variation in cyanobacterial densities was mainly associated with temperature, spatial variation was due to salinity while nutrients were non-limiting for cyanobacterial growth. Cyanobacterial biomass was dominated by several species of Microcystis that survived intermediate salinities. Intracellular MCs were detected in all the freshwater samples with concentrations up to 60 μg L−1, and more intermittently with concentrations up to 1.15 μg L−1, at the most upstream estuarine site. Intracellular MC was only sporadically detected and in low concentration at the most downstream estuarine site and at the marine outlet (respectively <0.14 μg L-1 and <0.03 μg L−1). Different MC variants were detected with dominance of MC-LR, RR and YR and that dominance was conserved along the salinity gradient. Extracellular MC contribution to total MC was higher at the downstream sites in accordance with the lysing of the cells at elevated salinities. No nodularin (NOD) was detected in the particulate samples or in the filtrates.  相似文献   

7.
Accurate estimation of phytoplankton chlorophyll-a (Chl-a) concentration in turbid waters through remote sensing is a challenge due to the optical complexity of water constituents. Reflectance spectra and concurrent water quality parameters of 225 samples across the Shitoukoumen Reservoir, the drinking water resource for Changchun City, were used to retrieve Chl-a concentration with high total suspended matter (TSM) during 2006–2008. A combination of genetic algorithms and partial least square (GA-PLS) model was established for Chl-a retrieval through GA to select sensitive spectral variables and PLS for regression. To compare GA-PLS performances, the widely accepted three-band algorithm was implemented for Chl-a concentration estimation. Both GA-PLS and the three-band algorithm have stable performance for the aggregated dataset (R2 = 0.85 and 0.81; RPD = 3.95 and 3.61; relative RMSE = 31.7% and 34.2%), with the GA-PLS model performing marginally better. The temporal transferability of the models was validated with the dataset collected in 2006 and 2007 respectively as independent dataset, showing that GA-PLS outperformed the three-band algorithm. Our result also indicated that relative error [(Chl-apredicted  Chl-ameasured) / Chl-ameasured] showed good linear relation to TSM: Chl-a ratio (R2 = 0.84), which implied that TSM concentration exerted significant impact on the accuracy of Chl-a estimation in this case study. As the results were derived from a large number of samples representing a wide range of spatiotemporal variations of pigment under TSM (3.7–472.8 mg/L) concentration influence, the GA-PLS model has great potential for Chl-a estimation for inland waters with similar backgrounds. Nevertheless, the three-band algorithm also has its own merit considering its simplicity for implementation.  相似文献   

8.
To learn more whether toxin formation by cyanobacteria is controlled by quorum sensing, the concentrations of microcystins and of homoserine lactones have been followed during a summer period in the deep mesotrophic Lake Zürich and in the shallow eutrophic Lake Muzzano. Specific cyanobacterial populations are present in both lakes, Planktothrix rubescens dominates in Lake Zürich, Microcystis wesenbergii in Lake Muzzano. Both organisms produced microcystins, and homoserine-lactones were detected as well in most of the samples. However, no clear relation between the concentrations of the two compounds was observed with sampling intervals of 2 weeks.  相似文献   

9.
A large nation-wide survey of cyanotoxins (1161 lakes) in the United States (U.S.) was conducted during the EPA National Lakes Assessment 2007. Cyanotoxin data were compared with cyanobacteria abundance- and chlorophyll-based World Health Organization (WHO) thresholds and mouse toxicity data to evaluate potential recreational risks. Cylindrospermopsins, microcystins, and saxitoxins were detected (ELISA) in 4.0, 32, and 7.7% of samples with mean concentrations of 0.56, 3.0, and 0.061 μg/L, respectively (detections only). Co-occurrence of the three cyanotoxin classes was rare (0.32%) when at least one toxin was detected. Cyanobacteria were present and dominant in 98 and 76% of samples, respectively. Potential anatoxin-, cylindrospermopsin-, microcystin-, and saxitoxin-producing cyanobacteria occurred in 81, 67, 95, and 79% of samples, respectively. Anatoxin-a and nodularin-R were detected (LC/MS/MS) in 15 and 3.7% samples (n = 27). The WHO moderate and high risk thresholds for microcystins, cyanobacteria abundance, and total chlorophyll were exceeded in 1.1, 27, and 44% of samples, respectively. Complete agreement by all three WHO microcystin metrics occurred in 27% of samples. This suggests that WHO microcystin metrics based on total chlorophyll and cyanobacterial abundance can overestimate microcystin risk when compared to WHO microcystin thresholds. The lack of parity among the WHO thresholds was expected since chlorophyll is common amongst all phytoplankton and not all cyanobacteria produce microcystins.  相似文献   

10.
Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L−1 MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified.  相似文献   

11.
Dissolved microcystins (MCs) are regularly present in water dominated by microcystin-producing, bloom-forming cyanobacteria. In vitro experiments with environmentally feasible concentrations (5 × 10−7 M) of the three most common microcystins, MC-LR, MC-RR, and MC-YR, revealed that they influence the metabolism of different representative phytoplanktons. At light intensities that are close to the cyanobacterial bloom environment (50 μmol m−2 s−1), they produce morphological and physiological changes in both microcystin-producing and -nonproducing Microcystis aeruginosa strains and also have similar effects on the green alga Scenedesmus quadricauda that is frequently present in cyanobacterial blooms. All three microcystin variants tested induce cell aggregation, increase in cell volume, and overproduction of photosynthetic pigments. All three effects appear to be related to each other but are not necessarily caused by the same mechanism. The biological activity of microcystins toward the light-harvesting complex of photobionts can be interpreted as a signal announcing the worsening of light conditions due to the massive proliferation of cyanobacteria. Although the function of microcystins is still unknown, it is evident that they have numerous effects on phytoplankton in nature. These effects depend on the individual organism as well as on the various intracellular and extracellular signaling pathways. The fact that dissolved microcystins also influence the physiology of microcystin-producing cyanobacteria leads us to the conclusion that the role of microcystins in the producing cells differs from the role in the water environment.  相似文献   

12.
Cyanobacteria can produce toxic metabolites known as cyanotoxins. Common and frequently investigated cyanotoxins include microcystins (MCs), nodularin (NOD) and saxitoxins (STXs). During the summer of 2011 extensive cyanobacterial growth was found in several fishponds in Serbia. Sampling of the water and fish (common carp, Cyprinus carpio) was performed. Water samples from 13 fishponds were found to contain saxitoxin, microcystin, and/or nodularin. LC–MS/MS showed that MC-RR was present in samples of fish muscle tissue. Histopathological analyses of fish grown in fishponds with cyanotoxin production showed histopathological damage to liver, kidney, gills, intestines and muscle tissues. This study is among the first so far to report severe hyperplasia of intestinal epithelium and severe degeneration of muscle tissue of fish after cyanobacterial exposure. These findings emphasize the importance of cyanobacterial and cyanotoxin monitoring in fishponds in order to recognize cyanotoxins and their potential effects on fish used for human consumption and, further, on human health.  相似文献   

13.
Cyanobacterial blooms are on the rise globally and are capable of adversely impacting human, animal, and ecosystem health. Blooms dominated by cyanobacteria species capable of toxin-production are commonly observed in eutrophic freshwater. The presence of cyanobacterial blooms in selected Ohio lakes, such as Lake Erie and Grand Lake St. Marys, has been well studied, but much less is known about the geographic distribution of these blooms across all of Ohio’s waterbodies. We examined the geographic distribution of cyanobacterial blooms in Ohio’s waterbodies from 2002 to 2011, using a nested semi-empirical algorithm and remotely sensed data from the Medium Resolution Imaging Spectrometer (MERIS) onboard the European Space Agency’s Envisat. We identified: 62 lakes, reservoirs, and ponds; 7 rivers; 6 marshes and wetlands; and 3 quarries with detectable cyanobacteria pigment (phycocyanin) concentrations. Of the 78 waterbodies identified in our study, roughly half (54%; n = 42) have any reported in situ microcystins monitoring results from state monitoring programs. Further, 90% of the waterbodies identified reached phycocyanin pigment concentrations representative of levels potentially hazardous to public health. This gap in lakes potentially impacted by cyanobacterial blooms and those that are currently monitored presents an important area of concern for public health, as well as ecosystem health, where unknown human and animal exposures to cyanotoxins may occur in many of Ohio’s waterbodies. Our approach may be replicated in other regions around the globe with potential cyanobacterial bloom presence, in order to assess the intensity, geographic distribution, and temporal pattern of blooms in lakes not currently monitored for the presence of cyanobacterial blooms.  相似文献   

14.

Background

Cyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins. These microcystins have been shown to harm livestock, pets and humans and to affect ecosystem service and functioning. Cyanobacterial blooms are increasing worldwide in intensity and frequency due to eutrophication and global warming. However, Daphnia, the main grazer of planktonic algae and cyanobacteria, has been shown to be able to suppress bloom-forming cyanobacteria and to adapt to cyanobacteria that produce microcystins. Since Daphnia’s genome was published only recently, it is now possible to elucidate the underlying molecular mechanisms of microcystin tolerance of Daphnia.

Results

Daphnia magna was fed with either a cyanobacterial strain that produces microcystins or its genetically engineered microcystin knock-out mutant. Thus, it was possible to distinguish between effects due to the ingestion of cyanobacteria and effects caused specifically by microcystins. By using RNAseq the differentially expressed genes between the different treatments were analyzed and affected KOG-categories were calculated. Here we show that the expression of transporter genes in Daphnia was regulated as a specific response to microcystins. Subsequent qPCR and dietary supplementation with pure microcystin confirmed that the regulation of transporter gene expression was correlated with the tolerance of several Daphnia clones.

Conclusions

Here, we were able to identify new candidate genes that specifically respond to microcystins by separating cyanobacterial effects from microcystin effects. The involvement of these candidate genes in tolerance to microcystins was validated by correlating the difference in transporter gene expression with clonal tolerance. Thus, the prevention of microcystin uptake most probably constitutes a key mechanism in the development of tolerance and adaptation of Daphnia. With the availability of clear candidate genes, future investigations examining the process of local adaptation of Daphnia populations to microcystins are now possible.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-776) contains supplementary material, which is available to authorized users.  相似文献   

15.
The cyanobacterial population in the Cajati waste stabilization pond system (WSP) from São Paulo State, Brazil was assessed by cell isolation and direct microscope counting techniques. Ten strains, belonging to five genera (Synechococcus, Merismopedia, Leptolyngbya, Limnothrix, and Nostoc), were isolated and identified by morphological and molecular analyses. Morphological identification of the isolated strains was congruent with their phylogenetic analyses based on 16S rDNA gene sequences. Six cyanobacterial genera (Synechocystis, Aphanocapsa, Merismopedia, Lyngbya, Phormidium, and Pseudanabaena) were identified by direct microscope inspection. Both techniques were complementary, since, of the six genera identified by direct microscopic inspection, only Merismopedia was isolated, and the four other isolated genera were not detected by direct inspection. Direct microscope counting of preserved cells showed that cyanobacteria were the dominant members (>90%) of the phytoplankton community during both periods evaluated (summer and autumn). ELISA tests specific for hepatotoxic microcystins gave positive results for six strains (Synechococcus CENA108, Merismopedia CENA106, Leptolyngbya CENA103, Leptolyngbya CENA112, Limnothrix CENA109, and Limnothrix CENA110), and for wastewater samples collected from raw influent (3.70 μg microcystins/l) and treated effluent (3.74 μg microcystins/l) in summer. Our findings indicate that toxic cyanobacteria in WSP systems are of concern, since the treated effluent containing cyanotoxins will be discharged into rivers, irrigation channels, estuaries, or reservoirs, and can affect human and animal health.  相似文献   

16.
Cyanobacteria may be important components of wastewater treatment plants’ (WWTP) biological treatment, reaching levels of 100% of the total phytoplankton density in some systems. The occurrence of cyanobacteria and their associated toxins in these systems present a risk to the aquatic environments and to public health, changing drastically the ecology of microbial communities and associated organisms. Many studies reveal that cyanotoxins, namely microcystins may not act as antibacterial compounds but they might have negative impacts on protozoans, inhibiting their growing and respiration rates and leading to changes in cellular morphology, decreasing consequently the treatment efficacy in WWTP. On the other side, flagellates and ciliates may ingest some cyanobacteria species while the formation of colonies by these prokaryotes may be seen as a defense mechanism against predation. Problems regarding the occurrence of cyanobacteria in WWTP are not limited to toxin production. Other cyanobacterial secondary metabolites may act as antibacterial compounds leading to the disruption of bacterial communities that biologically convert organic materials in WWTP being fundamental to the efficacy of the process. Studies reveal that the potential antibacterial capacity differs according to cyanobacteria specie and it seems to be more effective in Gram (+) bacteria. Thus, to understand the effects of cyanobacterial communities in the efficiency of the waste water treatment it will be necessary to unravel the complex interactions between cyanobacterial populations, bacteria, and protozoa in WWTP in situ studies.  相似文献   

17.
Cyanobacteria are the predominant phototrophs in freshwater ecosystems of the polar regions where they commonly form extensive benthic mats. Despite their major biological role in these ecosystems, little attention has been paid to their physiology and biochemistry. An important feature of cyanobacteria from the temperate and tropical regions is the production of a large variety of toxic secondary metabolites. In Antarctica, and more recently in the Arctic, the cyanobacterial toxins microcystin and nodularin (Antarctic only) have been detected in freshwater microbial mats. To date other cyanobacterial toxins have not been reported from these locations. Five Arctic cyanobacterial communities were screened for saxitoxin, another common cyanobacterial toxin, and microcystins using immunological, spectroscopic and molecular methods. Saxitoxin was detected for the first time in cyanobacteria from the Arctic. In addition, an unusual microcystin variant was identified using liquid chromatography–mass spectrometry. Gene expression analyses confirmed the analytical findings, whereby parts of the sxt and mcy operon involved in saxitoxin and microcystin synthesis, were detected and sequenced in one and five of the Arctic cyanobacterial samples, respectively. The detection of these compounds in the cryosphere improves the understanding of the biogeography and distribution of toxic cyanobacteria globally. The sequences of sxt and mcy genes provided from this habitat for the first time may help to clarify the evolutionary origin of toxin production in cyanobacteria.  相似文献   

18.
Microcystins (MC) are usually the predominant cyanotoxins associated with cyanobacterial blooms in natural surface waters. These toxins are well-known hepatotoxic agents that proceed by inhibiting protein phosphatase in aquatic biota; recent studies have also reported oxidative stress and disruption of ion regulation in aquatic organisms. In the present study, young trout (Oncorhynchus mykiss) were exposed to crude extracts of Microsystis aeruginosa for four days at 15 °C. The level of microcystins was calculated to confirm the presence of toxins in these crude extracts: 0, 0.75, 1.8 and 5 μg/L. Protein phosphatase measured in the liver increased by at least 3-fold and is significantly as a result of exposure to these sublethal concentrations of crude extract, his indicates an early defense response against protein phosphatase inhibition from cyanotoxins. This was corroborated by the decreased phosphate content in proteins found in the liver and brain. No increase in glutathione-S transferase (GST) activity was observed and lipid peroxidation was unaffected in both liver and brain tissue exposed to the cyanobacterial extracts. The data revealed that the proportion of the reduced (metal-binding) form of metallothionein (MT) decreased by two-fold relative to the control group (with a concomitant increase in the proportion of the oxidized form). The level of phosphate associated with MT increased by 1.5-fold at the highest concentration of crude extract. Acetylcholinesterase (AChE) activity in brain tissue was decreased after exposure to the highest concentration of crude extract, suggesting a slowdown in neural activity. However, no biotransformation processes or detoxification of GST was triggered. Our findings show early sign of biochemical effects of MC-LR in young trout.  相似文献   

19.
The cyanotoxin-microcystins: current overview   总被引:3,自引:0,他引:3  
The monocyclic heptapeptides microcystins (MCs), are a group of hepatotoxins, produced worldwide by some bloom-forming cyanobacterial species/strains both in marine and freshwater ecosystems. MCs are synthesized non-ribosomally by large multi-enzyme complexes consisting of different modules including polyketide synthases and non-ribosomal peptide synthetases, as well as several tailoring enzymes. More than 85 different variants of MCs have been reported to exist in nature. These are chemically stable, but undergo bio-degradation in natural water reservoirs. Direct or indirect intake of MCs through the food web is assumed to be a highly exposed route in risk assessment of cyanotoxins. MCs are the most commonly found cyanobacterial toxins that cause a major challenge for the production of safe drinking water and pose a serious threat to global public health as well as fundamental ecological processes due to their potential carcinogenicity. Here, we emphasize recent updates on different modes of action of their possible carcinogenicity. Besides the harmful effects on human and animals, MC producing cyanobacteria can also present a harmful effect on growth and development of agriculturally important plants. Overall, this review emphasizes the current understanding of MCs with their occurrence, geographical distribution, accumulation in the aquatic as well as terrestrial ecosystems, biosynthesis, climate-driven changes in their synthesis, stability and current aspects on its degradation, analysis, mode of action and their ecotoxicological effects.  相似文献   

20.
Satellite remote estimates of phycocyanin (PC) have become valuable for monitoring the quality of inland waters affected by harmful cyanobacterial blooms. In this study, we developed an algorithm for mapping turbidity as a proxy of PC content through Landsat 8 Operational Land Imager (OLI) data and in situ measurements. The chosen study site is Karaoun Reservoir, in Lebanon, a hypereutrophic freshwater body where turbidity is mostly driven by cyanobacteria. Satellite images were corrected for atmospheric effects with the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) code which proved to be more accurate than the DOS (Dark Object Subtraction) approach with R = 0.98 and R = 0.5, respectively. A strong relationship was found between turbidity and PC measurements (R = 0.92, R2 = 0.86), as well as between turbidity and the ratio of band 5 to band 4 of the OLI (R = 0.88, R2 = 0.77). Results reveal a promising performance of the algorithm for predicting PC concentrations with high correlations determined through simple linear regression analysis for both the calibration (R = 0.92, R2 = 0.85) and validation (R = 0.88, R2 = 0.78) periods. An application of the approach to a set of historical Landsat images revealed a time series of cyanobacterial bloom occurrence with high variation in surface area at the study site. The algorithm is considered to be suitable for retrieving cyanobacteria in highly eutrophic waters dominated by cyanobacteria where turbidity is mostly a function of the latter. This approach will improve monitoring cyanobacterial blooms on a spatial and timely basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号