首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Zhou  Xinyan  Zhang  Kejia  Zhang  Tuqiao  Li  Cong  Mao  Xinwei 《Applied microbiology and biotechnology》2017,101(9):3537-3550

It is important for water utilities to provide esthetically acceptable drinking water to the public, because our consumers always initially judge the quality of the tap water by its color, taste, and odor (T&O). Microorganisms in drinking water contribute largely to T&O production and drinking water distribution systems (DWDS) are known to harbor biofilms and microorganisms in bulk water, even in the presence of a disinfectant. These microbes include T&O-causing bacteria, fungi, and algae, which may lead to unwanted effects on the organoleptic quality of distributed water. Importantly, the understanding of types of these microbes and their T&O compound-producing mechanisms is needed to prevent T&O formation during drinking water distribution. Additionally, new disinfection strategies and operation methods of DWDS are also needed for better control of T&O problems in drinking water. This review covers: (1) the microbial species which can produce T&O compounds in DWDS; (2) typical T&O compounds in DWDS and their formation mechanisms by microorganisms; (3) several common factors in DWDS which can influence the growth and T&O generation of microbes; and (4) several strategies to control biofilm and T&O compound formation in DWDS. At the end of this review, recommendations were given based on the conclusion of this review.

  相似文献   

2.
Coevolution is thought to be a major factor in shaping plant-pollinator interactions. Alternatively, plants may have evolved traits that fitted pre-existing preferences or morphologies in the pollinators. Here, we test these two scenarios in the plant family of Araceae and scarab beetles (Coleoptera, Scarabaeidae) as pollinators. We focused on floral volatile organic compounds (VOCs) and production/detection of VOCs by scarab beetles. We found phylogenetic structure in the production/detection of methoxylated aromatics in scarabs, but not plants. Within the plants, most of the compounds showed a well-supported pattern of correlated evolution with scarab-beetle pollination. In contrast, the scarabs showed no correlation between VOC production/detection and visitation to Araceae flowers, with the exception of the VOC skatole. Moreover, many VOCs were found in nonpollinating beetle groups (e.g., Melolonthinae) that are ancestors of pollinating scarabs. Importantly, none of the tested VOCs were found to have originated in pollinating taxa. Our analysis indicates a Jurassic origin of VOC production/detection in scarabs, but a Cretaceous/Paleocene origin of floral VOCs in plants. Therefore, we argue against coevolution, instead supporting the scenario of sequential evolution of floral VOCs in Araceae driven by pre-existing bias of pollinators.  相似文献   

3.
Park  Ikju  Thompson  David C. 《Biological invasions》2021,23(6):1663-1668

One of the main obstacles of classical biological control is that biological control organisms cannot be recalled once they are released in nature. It is particularly true for the flowerhead weevil, Rhinocyllus conicus Frölich, which was released as a biological control organism for the invasive musk thistle, Carduus nutans L. (MT). While weevils successfully suppressed introduced populations of musk thistles and other invasive thistle species, non-target attacks have been reported on multiple native thistles including federally listed threatened and endangered (T&E) thistle species. To investigate the foraging behavior of female weevils on invasive and native thistles, we examined volatile organic compounds (VOCs) emitted from MT and a T&E plant species, Sacramento Mountains thistle, Cirsium vinaceum Wooton & Standley (SMT) in the Lincoln National Forest, New Mexico. We used a dynamic headspace volatile collection system and gas chromatography-mass spectrometry to compare volatile profiles between MT and SMT. Female weevils reacted to 7 electrophysiologically active chemical compounds in the blends based on gas chromatography-electroantennography. The behavioral response of female weevils was indifferent when VOCs from both thistles were offered in y-tube olfactometry experiments. Yet, they preferred VOCs collected from MT to purified air. The searching time of female weevils was longer to VOCs collected from SMT over controls. Investigating signals during the initial host recognition of released biological control organisms may open new opportunities to reduce non-target attacks on T&E plant species.

  相似文献   

4.
Volatile organic compounds (VOCs) released by plants serve as information and defense chemicals in mutualistic and antagonistic interactions and mitigate effects of abiotic stress. Passive and dynamic sampling techniques combined with gas chromatography–mass spectrometry analysis have become routine tools to measure emissions of VOCs and determine their various functions. More recently, knowledge of the roles of plant VOCs in the aboveground environment has led to the exploration of similar functions in the soil and rhizosphere. Moreover, VOC patterns have been recognized as sensitive and time-dependent markers of biotic and abiotic stress. This focused review addresses these developments by presenting recent progress in VOC sampling and analysis. We show advances in the use of small, inexpensive sampling devices and describe methods to monitor plant VOC emissions in the belowground environment. We further address latest trends in real-time measurements of volatilomes in plant phenotyping and most recent developments of small portable devices and VOC sensors for non-invasive VOC fingerprinting of plant disease. These technologies allow for innovative approaches to study plant VOC biology and application in agriculture.  相似文献   

5.
A study was performed to determine the effectiveness of using biofiltration for the removal of a complex mixture of volatile organic compounds (VOCs) air-stripped from petroleum hydrocarbons. A biofilter was constructed which contained 264 cm3 of packing material (Celite? R-635). The unit was inoculated with a mixed culture containing a hydrocarbon-degrading Pseudomonas sp and an Alcaligenes sp. Several of the major compounds in the VOC mixture were monitored individually, along with the total VOCs, using gas chromatography. The average influent concentration of the VOC mixture was 320 ppmv and the average total VOC removal rate was over 56%, with the average removal rate of the monitored individual compounds ranging from 49–90%. After 30 days of operation the average overall removal rate was 69% and the removal of the major compounds averaged 92%. The toxicity and mutagenicity of the air stream was monitored using the Microtox and Ames assays, respectively. These data show marked decreases in toxicity and mutagenicity of the air stream as a result of the biofiltration treatment. The biofiltration system, therefore, was not only effective in removing VOCs from the air stream over an extended time-period, but was also effective in greatly reducing the toxicity and mutagenicity associated with the remaining VOCs. Received 03 July 1997/ Accepted in revised form 25 November 1997  相似文献   

6.
A method is described to assess the toxicity of selected volatile organic compounds (VOCs) in poplar trees. The method is illustrated for a specific aqueous mixture of VOCs that contaminates the groundwater at a site for which phytoremediation was being considered. The VOC mixture contained a variety of aromatic compounds, chlorinated aliphatics, and alcohols. Poplar tree cuttings planted in 50-gallon barrels in the greenhouse were watered via subirrigation. The subirrigant contained either a low (42 mg/L), medium (85 mg/L), or high (169 mg/L) dose of the VOC mixture, or water only (experimental control). Phytotoxicity was evaluated by measuring the physiological parameters of stomatal conductance, shoot elongation, and biomass production. Two experiments are briefly described: (1) The poplar tree cuttings were allowed to become established in the barrels and then treated to gradually increasing concentrations of the VOC mixture until the final dose was reached. The objective was to establish a detailed dose-response relationship. (2) The poplar tree cuttings were given the low, medium, or high dose of the VOC mixture immediately after planting. The aim of this experiment was to determine if the VOC mixture would be inhibitory to root development. Phytotoxic effects were not observed in either experiment.  相似文献   

7.
Competition between mycelia of saprotrophic cord-forming basidiomycetes occurs both within dead woody resources and in the soil-litter interface, and involves a variety of antagonistic mechanisms including the production of volatile organic compounds (VOCs). The antagonistic potential of VOC profiles from interactions in wood blocks and in soil microcosms was assessed using shared headspace experiments, and the profile of VOCs emitted over the course of interactions elucidated using solid phase microextraction (SPME) with gas chromatography-mass spectrometry (GC–MS). Quantitative and qualitative changes in VOC production occurred in interactions compared to self-pairing controls, with different VOC profiles from fungi growing in wood blocks compared to soil trays. There were both stimulatory and inhibitory effects of VOCs on target mycelial extension rate, hyphal coverage and fractal dimension. VOC-mediated effects were greater in self-pairing controls compared to interactions, and differed depending on the substratum in which the VOC-producing fungi were growing.  相似文献   

8.
Nonmethane volatile organic compounds (VOCs) are reactive, low molecular weight gases that can have significant effects on soil and atmospheric processes. Research into biogenic VOC sources has primarily focused on plant emissions, with few studies on VOC emissions from decomposing plant litter, another potentially important source. Likewise, although there have been numerous studies examining how anthropogenic increases in nitrogen (N) availability can influence litter decomposition rates, we do not know how VOC emissions may be affected. In this study, we measured the relative contribution of VOCs to the total carbon (C) emitted from decomposing litter and how N amendments affected VOC emissions. We incubated decomposing litter from 12 plant species over 125 days, measuring both CO2 and VOC emissions throughout the incubation. We found that VOCs represented a large portion of C emissions from a number of the litter types with C emissions as VOCs ranging from 0% to 88% of C emissions as CO2. Methanol was the dominant VOC emitted, accounting for 28–99% of total VOC emissions over the incubation period. N additions increased CO2 production in 7 of the 12 litter types by 5–180%. In contrast, N additions decreased VOC emissions in 8 of the 12 litter types, reducing net VOC emissions to near zero. The decrease in VOC emissions was occasionally large enough to account for the increased CO2 emissions on a per unit C basis, suggesting that N additions may not necessarily accelerate C loss from decomposing litter but rather just switch the form of C emitted. Together these results suggest that, for certain litter types, failure to account for VOC emissions may lead to an underestimation of C losses from litter decomposition and an overestimation of the effects of N additions on rates of litter decomposition.  相似文献   

9.
Volatile organic compounds (VOCs) have a direct bearing on the levels of ozone and other reactive chemicals in the atmosphere and play an important role in determining air quality Anthropogenic emission of VOCs has greatly increased due to growing consumption of fossil fuels and related activities. This article presents an emissions inventory for VOCs emitted from anthropogenic soutres in India. VOC emissions factors for important source categories and activities are assembled from the literature and an effort is made to use Indian emission factors as far as possible. Important sources of VOCs include livestock, combustion of firewood and fossil fuels, rice paddy fields, manufacturing. petroleum (production and refining), natural gas (production and distribution), vehicular exhaust, and coal mining. The annual anthropogenic VOC emissions for India have been estimated to be 21 million metric tons (mt). A comparison of VOC emissions inventories for a group of countries varying in their industrial and economic development, in terms of income (gross domestic product, or GDP), population, and land area, reflects the differences among the countries. This VOC emissions inventory provides baseline information for comparisons over time and across countries. In addition, it may serve as an important tool for formulating national VOC control policies.  相似文献   

10.
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.  相似文献   

11.

Background

Exhaled breath gases are becomingly increasingly investigated for use as non-invasive measurements for clinical diagnosis, prognosis and therapeutic monitoring. Exhaled volatile organic compounds (VOCs) in the breath, which make up the exhaled volatilome, offer a rich sample medium that provides both information to external exposures as well as endogenous metabolism. For these reasons, exhaled breath analyses can be extended further beyond disease-based investigations, and used for wider biomarker measurement purposes. The use of a rapid, non-invasive (and potentially non-physically demanding) test in an exercise and/or sporting situation may provide additional information for translation to performance sport, recreational exercise/fitness and clinical exercise health.

Aim of review

This review intends to provide an overview into the initial exploration of exhaled VOC measurements in sport and exercise science, and understand current limitations in knowledge and instrumentation that have restricted these methodologies in becoming common practice.

Key scientific concepts of review

Exhaled VOCs have been applied to sport/exercise investigations with a current emphasis on measurement of chemical exposure during and/or following exercise. This includes the measurement of disinfection by-products from chlorine-disinfected swimming pools, as well as exposure to petrochemicals from combustion engines (e.g. vehicle fumes). However, exhaled VOC measurements have been less employed in the context of performance sport. For example, the application of exhaled VOCs to map biochemical/physiological processes of intense exercise is currently under explored and warrants further study. Nevertheless, there is promise for exhaled VOC testing in the development of rapid/on-line anti-doping screens, with initial steps taken in this field.
  相似文献   

12.
Plant volatile analysis may be the oldest form of what now is called plant "metabolomic" analysis. A wide array of volatile organic compounds (VOCs), such as alkanes, alcohols, isoprenoids, and esters, can be collected simultaneously from the plant headspace, either within the laboratory or in the field. Increasingly faster and more sensitive analysis techniques allow detection of an ever-growing number of compounds in decreasing concentrations. However, the myriads of data becoming available from such experiments do not automatically increase our ecological and evolutionary understanding of the roles these VOCs play in plant-insect interactions. Herbivores and parasitoids responding to changes in VOC emissions are able to perceive minute changes within a complex VOC background. Plants modified in genes involved in VOC synthesis may be valuable for the evaluation of changes in plant-animal interactions compared to tests with synthetic compounds, as they allow changes to be made within the context of a more complex profile. We argue that bioinformatics is an essential tool to integrate statistical analysis of plant VOC profiles with insect behavioural data. The implementation of statistical techniques such as multivariate analysis (MVA) and meta-analysis is of the utmost importance to interpreting changes in plant VOC mixtures. MVA focuses on differences in volatile patterns rather than in single compounds. Therefore, it more closely resembles the information processing in insects that base their behavioural decisions on differences in VOC profiles between plants. Meta-analysis of different datasets will reveal general patterns pertaining to the ecological role of VOC in plant-insect interactions. Successful implementation of bioinformatics in VOC research also includes the development of MVA that integrate time-resolved chemical and behavioural analyses, as well as databases that link plant VOCs to their effects on insects.  相似文献   

13.
Volatile organic compounds (VOCs) serve as important infochemicals, mediating several ecological interactions including herbivory and pollination. Atmospheric pollutants including traffic‐related air pollution may impair the detection of VOCs used by insects in insect–plant interactions. We investigated the indirect effect of petrol exhaust pollution on olfactory learning and memory (short and long term) in honey bees. Using appetitive olfactory conditioning, we trained bees to learn one of four floral VOC profiles; linalool, dipentene, myrcene and geranium. VOCs were unpolluted or polluted with exhaust collected from a petrol generator. Exhaust emissions included concentrations of CO (246.07 + 17 ppm), NO (20.50 + 6.90 ppb) and NO2 (20.93 + 0.05 ppb) consistent with those typically encountered in urban areas and near roads. Once bees had learnt the training VOC, we tested whether they could recognise that VOC 1 h, 24 h and 48 h post‐training. Bees took significantly longer to learn polluted VOCs and forgot them faster than unpolluted ones. We also tested the ‘masking’ potential of pollution on floral VOCs. Using gas chromatography mass spectroscopy we noted differences in the chemical profile of polluted versus unpolluted VOCs and tested whether bees could recognise polluted VOCs if trained using unpolluted ones. For several VOCs tested, bees could distinguish between polluted and unpolluted VOCs. Ultimately, our results show that air pollution changes the recognition and retention of floral VOCs by bees which may consequently impact foraging efficiency.  相似文献   

14.
Watson  S.B.  Kling  H.  & Izaguirre  G. 《Journal of phycology》2003,39(S1):58-59
Aquatic taste and odour (T/O) is most often associated with musty/earthy volatile organic compounds (VOCs) produced by cyanobacteria, the most-studied taxa in T/O research. In fact although cyanobacteria represent over 200,000 described morphological species, relatively few (.  相似文献   

15.
Taste and odor (T&O) problems, which have adversely affected the quality of water supplied to millions of residents, have repeatedly occurred in Taihu Lake (e.g., a serious odor accident occurred in 2007). Because these accidents are difficult for water resource managers to forecast in a timely manner, there is an urgent need to develop optimum models to predict these T&O problems. For this purpose, various biotic and abiotic environmental parameters were monitored monthly for one year at 30 sites across Taihu Lake. This is the first investigation of this huge lake to sample T&O compounds at the whole-lake level. Certain phytoplankton taxa were important variables in the models; for instance, the concentrations of the particle-bound 2-methylisoborneol (p-MIB) were correlated with the presence of Oscillatoria, whereas those of the p-β-cyclocitral and p-β-ionone were correlated with Microcystis levels. Abiotic factors such as nitrogen (TN, TDN, NO3-N, and NO2-N), pH, DO, COND, COD and Chl-a also contributed significantly to the T&O predictive models. The dissolved (d) T&O compounds were related to both the algal biomass and to certain abiotic environmental factors, whereas the particle-bound (p) T&O compounds were more strongly related to the algal presence. We also tested the validity of these models using an independent data set that was previously collected from Taihu Lake in 2008. In comparing the concentrations of the T&O compounds observed in 2008 with those concentrations predicted from our models, we found that most of the predicted data points fell within the 90% confidence intervals of the observed values. This result supported the validity of these models in the studied system. These models, basing on easily collected environmental data, will be of practical value to the water resource managers of Taihu Lake for evaluating the probability of T&O accidents.  相似文献   

16.
Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME–GC–MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.  相似文献   

17.
Substantial amounts of volatile organic compounds (VOCs) can be released during decomposition and these compounds can affect atmospheric chemistry, belowground processes, and the structure of microbial communities in litter and soil. However, we have a limited understanding of the types, quantities and ecological impacts of VOCs emitted from litter. Here we used a closed flow-through system and proton transfer reaction mass spectrometry (PTR-MS) to characterize VOC emissions from soil and two litter types (Pinus taeda and Acer rubrum) over a 72-day incubation period. Microbial respiration rates were measured throughout the incubation, and the soils were harvested at the end of the incubation to determine how litter VOCs influenced soil C dynamics, N mineralization rates, and bacterial communities. Using the PTR-MS we identified over 100 VOCs, with 10 VOCs making up the majority of emissions. VOCs accounted for up to 2.5% of the C flux from litter. Soil was a net sink of litter VOCs, absorbing up to 80% of VOCs released by litter, and exposure of soil to litter VOCs increased microbial respiration rates in soil by up to 15%. However, we observed negligible impacts of litter VOCs on soil nutrient levels and bacterial community structure, suggesting that soils must be exposed to higher concentrations of VOCs than observed in our study, to cause effects on these soil characteristics. Overall, VOCs appear to have an important influence on C dynamics at the soil-litter interface and VOC emissions from decomposing litter may represent an understudied component of biosphere–atmosphere interactions.  相似文献   

18.
Practical approaches to plant volatile analysis   总被引:21,自引:0,他引:21  
Plants emit volatile organic compounds (VOCs) that play important roles in their interaction with the environment and have a major impact on atmospheric chemistry. The development of static and dynamic techniques for headspace collection of volatiles in combination with gas chromatography-mass spectrometry analysis has significantly improved our understanding of the biosynthesis and ecology of plant VOCs. Advances in automated analysis of VOCs have allowed the monitoring of fast changes in VOC emissions and facilitated in vivo studies of VOC biosynthesis. This review presents an overview of methods for the analysis of plant VOCs, including their advantages and disadvantages, with a focus on the latest technical developments. It provides guidance on how to select appropriate instrumentation and protocols for biochemical, physiological and ecologically relevant applications. These include headspace analyses of plant VOCs emitted by the whole organism, organs or enzymes as well as advanced on-line analysis methods for simultaneous measurements of VOC emissions with other physiological parameters.  相似文献   

19.
In eutrophicated water, cyanobacteria massively grow and release an abundance of volatile organic compounds (VOCs) that contribute to the water odor. To uncover the effects of different phosphorus (P) nutrients on the formation of cyanobacteria VOCs and water odor, the cell growth and VOC emissions of Microcystis aeruginosa were investigated under different P nutrient conditions. Among K2HPO4, Na4P2O7, and (NaPO3)6, K2HPO4 showed the largest increase in cell density, while a reduction in P concentration decreased the cell density. There were 26, 23 and 22 compounds in M. aeruginosa VOCs with K2HPO4, Na4P2O7 and (NaPO3)6 as the sole P source, respectively, including sulfocompounds, terpenoids, benzenes, hydrocarbons, alcohols, aldehydes, and esters. Non‐P markedly promoted the VOC emission, and six additional compounds were observed: α‐pinene, 1‐phenyl‐1‐butanone, 1H‐1‐ethylidene‐indene, 2,6,10‐trimethyl‐tetradecane, 2‐ethyl‐hexanal, and acetic acid 2‐ethylhexyl ester. It can be deduced that cyanobacteria release different VOC blends using various P forms in eutrophicated waters, and the reduction of P amount promotes VOC emission and increases the water odor.  相似文献   

20.
Ecological functions of volatile organic compounds in aquatic systems   总被引:1,自引:0,他引:1  
In terrestrial ecosystems, volatile organic compounds (VOCs) are widely acknowledged as an important group of infochemicals. They play a major role in pollinator attraction by terrestrial plants and as insect pheromones. Furthermore, they are the mediating agent of so-called 'tritrophic interactions'. When plants are attacked by herbivorous insects, volatile signal substances are emitted, which act as attractants for parasitoids that kill the herbivores, thereby protecting the plant from herbivory. Despite the generally acknowledged importance of VOCs in terrestrial chemical ecology, their functions in aquatic food webs are largely unknown. VOCs produced by algae and cyanobacteria are a major concern in water processing, since aquatic primary producers are the reason for regularly encountered taste and odour problems in drinking water. Only very recently, research in aquatic chemical ecology has started to investigate possible ecological functions for the production of VOCs by algae and cyanobacteria. Volatile aldehydes released by wounded cells of marine planktonic diatoms seem to act as defensive compounds against herbivorous copepods on the population level. Just recently, it was found that VOCs released from benthic algae and cyanobacteria can be utilised as food and/or habitat finding cues by aquatic invertebrates such as freshwater gastropods and nematodes. Here, I review concepts and recent experimental studies on the ecological functions of such VOCs in aquatic ecosystems. Understanding the factors that lead to the liberation of volatile compounds is an essential prerequisite to properly assessing their ecological functions. It appears that (similar to terrestrial plant-herbivore interactions) VOCs can also play a steering role for both attraction and defence in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号