首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ecological Engineering》2007,29(2):154-163
The South Nation River Watershed, in eastern Ontario, Canada, is an agricultural watershed impacted by excess nutrient loading primarily from agricultural activities. A constructed wetland for the treatment of agricultural wastewater from a 150-cow dairy operation in this watershed was monitored in its eighth operating season to evaluate the proportion of total nitrogen (TN) (approximated by total Kjeldahl nitrogen (TKN) due to low NO3) and total phosphorus (TP) removal that could be attributed to storage in Typha latifolia L. and Typha angustifolia L., which dominate this system. Nutrient loading rates were high, with 16.2 kg ha−1 d−1 N and 3.4 kg ha−1 d−1 P entering the wetland and loading the first wetland cell. Plant uptake accounted for 0.7% of TKN removal when the vegetated free water surface cells were considered together. However, separately, in the second wetland cell with lower N and P loading rates, plants accounted for 9% of TKN, 21% of NH4+ and 5% of TP removal. Plant uptake was significant to overall removal given wetland age and nutrient loading. Nutrient storage during the growing season at this constructed wetland helped reduce the nutrient load entering the watershed, already stressed by intensive local agriculture.  相似文献   

2.
《Ecological Indicators》2007,7(2):371-386
Aquatic macroinvertebrates have been among the principal biological communities used for freshwater monitoring and assessment for several decades, but macroinvertebrate biomonitoring has not incorporated nutrient measures into assessment strategies. Two nutrient biotic indices were developed for benthic macroinvertebrate communities, one for total phosphorus (NBI-P), and one for nitrate (NBI-N). Weighted averaging was used to assess the distributions of 164 macroinvertebrate taxa across TP and NO3 gradients and to establish nutrient optima and subsequent nutrient tolerance values. Both the NBI-P and NBI-N were correlated with increasing mean TP and NO3 values (r = 0.68 and r = 0.57, respectively, p < 0.0001). A three-tiered scale of eutrophication for TP and NO3 (oligotrophic: ≤0.0175 mg/l TP, ≤0.24 mg/l NO3, mesotrophic: >0.0175 to ≤0.065 mg/l TP, >0.24 to ≤0.98 mg/l NO3, eutrophic: >0.065 mg/l TP, >0.98 mg/l NO3) was also established through cluster analysis of invertebrate communities using Bray–Curtis (quantitative) similarity. Significant differences (p < 0.0001) were detected between median NBI-P and NBI-N scores among the three trophic states. Therefore, the nutrient biotic indices (NBIs) appear to accurately reflect changes in stream trophic state. Multimetric water quality assessments were also used to identify thresholds of impairment among the three trophic states. Hodges-Lehman estimation indicated that the greatest change in assessment results occurred between the mesotrophic and eutrophic states. The eutrophic state also represented the highest percentage of overall impairment. Therefore, the suggested threshold for nutrient impairment is the boundary between mesotrophic and eutrophic (0.065 mg/l TP and 0.98 mg/l NO3). The corresponding NBI-P score (6.1) and NBI-N score (6.0) for this threshold incorporate predictive capabilities into the NBIs. The NBI and index score thresholds of impairment will provide monitoring programs with a robust measure of stream nutrient status and serve as a useful tool in enforcing regional nutrient criteria.  相似文献   

3.
The biogeochemical cycles of nitrogen (N) and base cations (BCs), (i.e., K+, Na+, Ca2+, and Mg2+), play critical roles in plant nutrition and ecosystem function. Empirical correlations between large experimental N fertilizer additions to forest ecosystems and increased BCs loss in stream water are well demonstrated, but the mechanisms driving this coupling remain poorly understood. We hypothesized that protons generated through N transformation (PPRN)—quantified as the balance of NH4+ (H+ source) and NO3 (H+ sink) in precipitation versus the stream output will impact BCs loss in acid-sensitive ecosystems. To test this hypothesis, we monitored precipitation input and stream export of inorganic N and BCs for three years in an acid-sensitive forested watershed in a granite area of subtropical China. We found the precipitation input of inorganic N (17.71 kg N ha−1 year−1 with 54% as NH4+–N) was considerably higher than stream exported inorganic N (5.99 kg N ha−1 year−1 with 83% as NO3–N), making the watershed a net N sink. The stream export of BCs (151, 1518, 851, and 252 mol ha−1 year−1 for K+, Na+, Ca2+, and Mg2+, respectively) was positively correlated (r = 0.80, 0.90, 0.84, and 0.84 for K+, Na+, Ca2+, and Mg2+ on a monthly scale, respectively, P < 0.001, n = 36) with PPRN (389 mol ha−1 year−1) over the three years, suggesting that PPRN drives loss of BCs in the acid-sensitive ecosystem. A global meta-analysis of 15 watershed studies from non-calcareous ecosystems further supports this hypothesis by showing a similarly strong correlation between ∑BCs output and PPRN (r = 0.89, P < 0.001, n = 15), in spite of the pronounced differences in environmental settings. Collectively, our results suggest that N transformations rather than anions (NO3 and/or SO42−) leaching specifically, are an important mediator of BCs loss in acid-senstive ecosystems. Our study provides the first definitive evidence that the chronic N deposition and subsequent transformation within the watershed drive stream export of BCs through proton production in acid-sensitive ecosystems, irrespective of their current relatively high N retention. Our findings suggest the N-transformation-based proton production can be used as an indicator of watershed outflow quality in the acid-sensitive ecosystems.  相似文献   

4.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

5.
《Ecological Engineering》2007,29(3):294-304
Controlling phosphorus (P) inputs to lakes remains a priority of lake management. This study develops watershed P balances for 11 recreational lakes in Minnesota. Areal P input rates to the watersheds ranged from 0.32 to 6.0 kg P ha−1 year−1 and was linearly related to the percentage of watershed in agriculture. Watershed P retention ranged from 10% to 89% of input P. Although many best management practices work to increase P retention (by trapping P in basins; reducing erosion; filtration), P retention is not sustainable indefinitely, particularly in “hot spots” such as septic leach fields and heavily manured fields. The watershed P balance tool is a framework that can allow watershed managers to develop novel strategies for managing P. P management strategies should be developed to keep P inputs and exports in balance so that P does not accumulate; long-term P accumulation is not sustainable and can eventually lead to lake eutrophication.  相似文献   

6.
The ability of riverine ecosystems to retain nutrients depends on different hydrological, chemical and biological conditions including exchange processes between streams and wetlands. We investigated nutrient retention in a stream wetland complex on the time scale of daily hydrological exchange between both systems. Daily mass balances of NO3-N, NH4-N, TP and SRP were calculated with data obtained by two automated measurement stations in a stream reach upstream and downstream of a wetland. The pattern of hydrological exchange between stream and wetland was used to classify characteristic hydrological periods like floods, base and low flows. The nutrient retention function of the stream wetland complex varied considerably during phases of similar hydrologic conditions. Despite re-wetting measures in the wetland, an overall net export of all nutrients except for NH4-N characterised the whole growing season. Nitrate retention occurred during summer flood (retention in the wetland, 23 kg NO3-N d?1, 17% of the input load) and low flow (retention in the stream, 1 kg NO3-N d?1, 2% of the input load). TP retention during summer could be assigned to sedimentation (0.7 kg TP d?1, 7% during flooding in the wetland, 0.2 kg TP d?1, 4% during low flow in the stream). SRP retention was only intermittent. We concluded that the nutrient retention of streams and wetlands can only be optimised by restoration measures that regard both systems as one functional unit in terms of nutrient retention.  相似文献   

7.
Anthropogenic deposition of reactive nitrogen (N) has increased during the 20th century, and is considered an important driver of shifts in ecosystem functions and biodiversity loss. The objective of the present study was to identify those ecosystem functions that best evidence a target ecosystem’s sensitivity to N deposition, taking coastal heathlands as an example. We conducted a three-year field experiment in heathlands of the island Fehmarn (Baltic Sea, North Germany), which currently are subject to a background deposition of 9 kg N ha−1 yr−1. We experimentally applied six levels of N fertilisation (application of 0, 2.5, 5, 10, 20, and 50 kg N ha−1 yr−1), and quantified the growth responses of different plant species of different life forms (dwarf shrubs, graminoids, bryophytes, lichens) as well as shifts in the C:N ratios of plant tissue and humus horizons. For an applicability of the experimental findings (in terms of heathland management and critical load assessment) fertilisation effects on response variables were visualised by calculating the treatment ‘effect sizes’. The current year’s shoot increment of the dominant dwarf shrub Calluna vulgaris proved to be the most sensitive indicator to N fertilisation. Shoot increment significantly responded to additions of ≥ 5 kg N ha−1 yr−1 already in the first year, whereas flower formation of Calluna vulgaris increased only in the high-N treatments. Similarly, tissue C:N ratios of vascular plants (Calluna vulgaris and the graminoids Carex arenaria and Festuca ovina agg.) only decreased in the highest N treatments (50 and 20 kg N ha−1 yr−1, respectively). In contrast, tissue C:N ratios of cryptogams responded more quickly and sensitively than vascular plants. For example, Cladonia spp. tissue C:N ratios responded to N additions ≥ 5 kg N ha−1 yr−1 in the second study year. After three years we observed an increase in cover of graminoids and a corresponding decrease of cryptogams at N fertilisation rates of ≥ 10 kg N ha−1 yr−1. Soil C:N ratios proved to be an inappropriate indicator for N fertilisation at least within our three-year study period. Although current critical N loads for heathlands (10−20 kg N ha−1 yr−1) were confirmed in our experiment, the immediate and highly sensitive response of the current year’s shoots of Calluna vulgaris suggests that at least some ecosystem functions (e.g. dwarf shrub growth) also might respond to low (i.e. < 10 kg N ha−1 yr−1) but chronic inputs of N.  相似文献   

8.
Uptake and release of nutrients from ponds used for lotus cultivation were measured in ponds under short-term (1 yr) cultivation with compost application (pond I) and under long-term (20 yr) cultivation without compost application (pond II). Total inflow loads of TN (irrigation water, rainfall and compost) during lotus cultivation period in ponds I and II were 72.3 and 34.3 kg ha?1 182 day?1, respectively. TN removal rates in ponds I and II were 77.3 and 49.8% of total inflow load, respectively. Major removal mechanisms of TN were attributed to microbial processes and uptake by lotus. The total outflow loads (infiltration and runoff) of TN during the lotus cultivation period were 13.9 kg ha?1 182 day?1 (19.2% of total inflow TN load) for pond I, and 11.3 kg ha?1 182 day?1 (32.9% of total inflow TN load) for pond II. For TP the total inflow loads (irrigation water, rainfall and compost) during lotus cultivation in ponds I and II were 80.8 and 1.9 kg ha?1 182 day?1, respectively. TP removal rates in ponds I and II were 84.9 and ?274.1% of total input, respectively. Phosphorus removal was attributed to lotus uptake and soil adsorption. The total outflow loads (infiltration and runoff) of TP during lotus cultivation period were 10.1 kg ha?1 182 day?1 (12.5% of total inflow TP load) for pond I, and 6.6 kg ha?1 182 day?1 (355.6% of total inflow TP load) for pond II. TN and TP in runoff from pond I (with compost) was higher than that in pond II (without compost), showing that TN and TP in runoff were strongly influenced by compost addition. Therefore, in order to satisfy established water-quality standards, the amount of compost used in lotus cultivation should be evaluated.  相似文献   

9.
The phosphorus (P) fractions and bioavailable P in the sediments from the Quanzhou Bay Estuarine Wetland Nature Reserve were investigated using chemical extraction methods for the first time to study the distribution and bioavailability of P in the reserve sediments. A hypothesis was presented suggesting that the bioavailable P in the sediments could be evaluated using the P fractions. The total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP), non-apatite phosphorus (NAIP), and apatite phosphorus (AP) contents in the sediments were in the ranges of 303.87–761.59 mg kg−1, 201.22–577.66 mg kg−1, 75.83–179.16 mg kg−1, 28.86–277.90 mg kg−1, and 127.36–289.94 mg kg−1, respectively. The water soluble phosphorus (WSP), readily desorbable phosphorus (RDP), algal available phosphorus (AAP), and NaHCO3 extractable phosphorus (Olsen-P) contents in the sediments were in the ranges of 0.58–357.17 mg kg−1, 80.77–586.75 mg kg−1, 1.09–24.12 mg kg−1, and 54.96–676.82 mg kg−1, respectively. The correlation analysis results showed that the NAIP was the major component of the bioavailable P and that the impact of the AP on the bioavailable phosphorus may be minimal. Due to the low TP content in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve, the potential pollution risks of P in the sediments may not be very high. The results also show that the bioavailable P concentrations in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve could not be evaluated by measuring the P fractions and that the hypothesis was untenable.  相似文献   

10.
Increasing economic growth and industrial development in China is starting to impact even remote areas such as the Shennongjia nature reserve, where nitrogen pollution is becoming a major environmental threat. The epiphytic lichen flora is particularly rich in this area and is one of the components of this habitat most sensitive to nitrogen pollution. Since lichens represent an important food resource for the endangered monkey species Rhinopithecus roxellana, a reduction in lichen availability would have harmful consequences for the conservation of its habitat in the Shennongjia Mountains. To investigate the effects of increased nitrogen availability on the local lichen communities, so far scarcely considered, we conducted a one-year field experiment measuring growth, survival, and phosphomonoesterase activity of the widespread species Usnea luridorufa in response to nitrogen (up to 50 kg N ha−1 year−1 deposition) and phosphorus supply. Growth and survival of thalli and propagules of U. luridorufa decreased when treated with N deposition >12.05 kg N ha−1 year−1 and >2.14 kg N ha−1 year−1, respectively. The important role of phosphorus availability in relation to nitrogen supply was demonstrated by the increase in phosphomonoesterase activity with increasing nitrogen availability until a nitrogen toxicity threshold was reached. However, the high concentration of phosphorus in rainwater showed that phosphorus is not a limiting nutrient in the area.The results make a contribution to the knowledge of the negative effects of increased N deposition in the Shennongjia forest ecosystem.  相似文献   

11.
《Process Biochemistry》2007,42(4):715-720
A comparative study to produce the correct influent for Anammox process from anaerobic sludge reject water (700–800 mg NH4+-N L−1) was considered here. The influent for the Anammox process must be composed of NH4+-N and NO2-N in a ratio 1:1 and therefore only a partial nitrification of ammonium to nitrite is required. The modifications of parameters (temperature, ammonium concentration, pH and solid retention time) allows to achieve this partial nitrification with a final effluent only composed by NH4+-N and NO2-N at the right stoichiometric ratio. The equal ratio of HCO3/NH4+ in reject water results in a natural pH decrease when approximately 50% of NH4+ is oxidised. A Sequencing batch reactor (SBR) and a chemostat type of reactor (single-reactor high activity ammonia removal over nitrite (SHARON) process) were studied to obtain the required Anammox influent. At steady state conditions, both systems had a specific conversion rate around 40 mg NH4+-N g−1 volatile suspended solids (VSS) h−1, but in terms of absolute nitrogen removal the SBR conversion was 1.1 kg N day−1 m−3, whereas in the SHARON chemostat was 0.35 kg N day−1 m−3 due to the different hydraulic retention time (HRT) used. Both systems are compared from operational (including starvation experiments) and kinetic point of view and their advantages/disadvantages are discussed.  相似文献   

12.
Time series of values of ingenious parameters indicating ecosystem services from European beech and Norway spruce ecosystems at Solling, Germany, were evaluated with respect to resilient or adaptive behaviour. Studied indicators comprise the use of monitoring data with up to more than 40 years of observation on deposition of potential acidity, sulphate (SO42−) budgets, exchangeable base cation pools, Bc/Al ratio in soil solution, nitrogen (N) budgets, foliar nutrition as indicated by the foliar Bc/N ratio, and defoliation. Deposition of potential acidity decreased considerably at both ecosystems. SO42− budgets reveal retention of sulphur in the soils affecting acid/base budgets. Exchangeable base cation pools decreased at both ecosystems by about 60%. Bc/Al ratio in soil solution in the mineral soil was mostly below critical limits indicating potential toxic stress to tree roots. N retention in the soils decreased from about 40 kg ha−1 yr−1 in the 1970s to currently very low rates of 0–20 kg ha−1 yr−1 indicating increasing N saturation. Foliar Bc/N ratio decreased at the spruce ecosystem indicating possible nutrient imbalances. Defoliation at both Solling ecosystems is on a high level compared to other forests in Germany, but reveals no distinct relation to soil acidification or N saturation. From the selected indicators, SO42− and N budgets reveal resilient behaviour, whereas indicators related to the acid/base status tend to adaptive behaviour.  相似文献   

13.
《Process Biochemistry》2007,42(2):193-198
A pilot-scale vertical submerged membrane bioreactor (VSMBR) with anoxic and oxic zones in one reactor was operated in an attempt to reduce the problems concerning effective removal of organic matter and nutrients from municipal wastewater. Source water with total chemical oxygen demand (TCOD)/total nitrogen (TN) ratio of 5.5 was treated at various temperatures (13–25 °C) over an interval of about 1 year. As a result, total suspended solid (TSS) and TCOD were removed by 100% and higher than 98%, respectively. Moreover, the average removal efficiencies of TN and total phosphorus (TP) were found to be 74% and 78% at 8 h-hydraulic retention time (HRT) and 60-days sludge retention time (SRT). Under these conditions, the specific removal rates (SRR) of TN and TP were found to be 0.093 kg N m−3 day−1 and 0.008 kg P m−3 day−1, and the daily production of excess sludge (DPES), 0.058 kg TSS day−1.  相似文献   

14.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

15.
Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH4+), nitrate (NO3) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10 μmol N L−1, kinetic curves showed a clear preference pattern following the ranking NH4+ > NO3 > N-urea, where the preferential uptake of NH4+ relative to NO3 was accentuated by an inhibitory effect of NH4+ concentration on NO3 uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH4+ relative to NO3 was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO3 uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH4+ was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France).  相似文献   

16.
Lichen bioindication can provide economical and spatially extensive monitoring of climate and pollution impacts on ecological communities. We used non-metric multidimensional scaling of lichen community composition and generalized additive models to analyze regional climate and pollution gradients in the northern Rocky Mountains, U.S. Temperature extremes, relative humidity, and N-deposition were strongly related to lichen community composition. Eutrophic species (genera Physcia, Xanthomendoza, and Xanthoria) were associated with high N deposition, low precipitation, and temperature extremes. Estimated N deposition in our study ranged from <0.5 to 4.26 kg N ha−1 year−1 with degradation to lichen communities observed at 4.0 kg N ha−1 year−1, the indicated critical load. The resulting model can track changes in climate and N pollution related to lichen communities over time, identify probable sensitive or impacted habitats, and provide key information for natural resource management and conservation. The approach is broadly applicable to temperate ecosystems worldwide.  相似文献   

17.
The effects of wastewater loading rates and two macrophyte species on treatment of sugar factory stabilization pond effluent were investigated in a pilot-scale free water surface constructed wetland (FWS CW) system in western Kenya. For 12 months, four CWs were operated at a hydraulic loading rate of 75 mm day−1 and four at 225 mm day−1. Half the CWs were planted with Cyperus papyrus and half with Echinochloa pyramidalis. Water samples were taken at the inlets and outlets and analyzed for TP, TDP, NH4-N, and TSS. Mass removal rates of the selected water quality parameters were compared during three periods designated the short rain (period 1), dry (period 2), and long rain (period 3) seasons. There was a significant linear relationship between the mass removal rate of TP, NH4-N, and TSS and the mass load, and season had a significant effect on the mass removal rate of TSS, NH4-N, and TDP. Mass loading rates for TDP were about 78% of those for TP, whereas TDP comprised 78–99% of TP mass outflow rates, indicating a release of dissolved P within the CWs. The only significant difference between the two macrophyte species was associated with mass removal of NH4-N, with more efficient removal in CWs planted with C. papyrus than those with E. pyramidalis. TP mass removal rates were 50–80% higher when a mean water loss for CWs 6–8 during periods 1 and 2 was assumed to represent evapotranspiration for all CWs in period 3 instead of pan evaporation data. This illustrated the importance of accurate estimations of evapotranspiration for pollutant mass removal rates in CWs in tropical climates.  相似文献   

18.
The toxic HAB dinoflagellate Karenia brevis (Davis) G. Hansen & Ø. Moestrup (formerly Gymnodinium breve) exhibits a migratory pattern atypical of dinoflagellates: cells concentrate in a narrow (∼0–5 cm) band at the water surface during daylight hours due to phototactic and negative geotactic responses, then disperse downward at night via non-tactic, random swimming. The hypothesis that this daylight surface aggregation behavior significantly influences bacterial and algal productivity and nutrient cycling within blooms was tested during a large, high biomass (chlorophyll a >19 μg L−1) K. brevis bloom in October of 2001 by examining the effects of this surface layer aggregation on inorganic and organic nutrient concentrations, cellular nitrogen uptake, primary and bacterial productivity and the stable isotopic signature (δ15N, δ13C) of particulate material. During daylight hours, concentrations of K. brevis and chlorophyll a in the 0–5 cm surface layer were enhanced by 131% (±241%) and 32.1% (±86.1%) respectively compared with an integrated water sample collection over a 0–1 m depth. Inorganic (NH4, NO3+2, PO4, SiO4) and organic (DOP, DON) nutrient concentrations were also elevated within the surface layer as was both bacterial and primary productivity. Uptake of nitrogen (NH4+, NO3, urea, dissolved primary amines, glutamine and alanine) compounds by K. brevis was greatest in the surface layer for all compounds tested, with the greatest enhancement evident in urea uptake rates, from 0.08 × 10−5 ng N K. brevis cell−1 h−1 to 3.1 × 10−5 ng N K. brevis cell−1 h−1. These data suggests that this surface aggregation layer is not only an area of concentrated cells within K. brevis blooms, but also an area of increased biological activity and nutrient cycling, especially of nitrogen. Additionally, the classic dinoflagellate migration paradigm of a downward migration for access to elevated NO3 concentrations during the dark period may not apply to certain dinoflagellates such as K. brevis in oligotrophic nearshore areas with no significant nitricline. For these dinoflagellates, concentration within a narrow surface layer in blooms during daylight hours may enhance nutrient supply through biological cycling and photochemical nutrient regeneration.  相似文献   

19.
Inappropriate farm practices can increase greenhouse gases (GHGs) emissions and reduce soil organic carbon (SOC) sequestration, thereby increasing carbon footprints (CFs), jeopardizing ecosystem services, and affecting climate change. Therefore, the objectives of this study were to assess the effects of different tillage systems on CFs, GHGs emissions, and ecosystem service (ES) values of climate regulation and to identify climate-resilient tillage practices for a winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) cropping system in the North China Plain (NCP). The experiment was established in 2008 involving no-till with residue retention (NT), rotary tillage with residue incorporation (RT), sub-soiling with residue incorporation (ST), and plow tillage with residue incorporation (PT). The results showed that GHGs emissions from agricultural inputs were 6432.3–6527.3 kg CO2-eq ha−1 yr−1 during the entire growing season, respectively. The GHGs emission from chemical fertilizers and irrigation accounted for >80% of that from agricultural inputs during the entire growing season. The GHGs emission from agricultural inputs were >2.3 times larger in winter wheat than that in the summer maize season. The CFs at yield-scale during the entire growing season were 0.431, 0.425, 0.427, and 0.427 without and 0.286, 0.364, 0.360, and 0.334 kg CO2-eq kg−1 yr−1 with SOC sequestration under NT, RT, ST, and PT, respectively. Regardless of SOC sequestration, the CFs of winter wheat was larger than that of summer maize. Agricultural inputs and SOC change contributed mainly to the component of CFs of winter wheat and summer maize. The ES value of climate regulation under NT was ¥159.2, 515.6, and 478.1 ha−1 yr−1 higher than that under RT, ST, and PT during the entire growing season. Therefore, NT could be a preferred “Climate-resilient” technology for lowering CFs and enhancing ecosystem services of climate regulation for the winter wheat–summer maize system in the NCP.  相似文献   

20.
Fluxes of major ions and nutrients were measured in the N-saturated mountain forest catchment-lake system of Čertovo Lake (Czech Republic) from 1998 to 2014. The lake has been rapidly recovering from atmospheric acidification due to a 90% decrease in sulphate (SO42−) deposition since the late 1980s and nitrate (NO3) contribution to the pool of strong acid anion and leaching of dissolved organic carbon (DOC) have increased. Present concentrations of base cations, phosphorus (P), total organic N (TON), and ionic (Ali) and organically bound (Alo) aluminium in tributaries are thus predominantly governed by NO3 and DOC leaching. Despite a continuing recovery lasting 25 years, the Čertovo catchment is still a net source of protons (H+), producing 44 mmol m−2 yr−1 H+ on a catchment-area basis (corresponding to 35 μmol L−1 on a concentration basis). Retention of the deposited inorganic N in the catchment averages 20%, and ammonium consumption (51 mmol m−2 yr−1) and net NO3 production (28 mol m−2 yr−1) are together the dominant terrestrial H+ generating processes. In contrast, the importance of SO42− release from the soils on terrestrial H+ production is continuously decreasing, with an average of 47 mmol m−2 yr−1 during the study. The in-lake biogeochemical processes reduce the incoming acidity by ∼40%, neutralizing 23 μmol L−1 H+ (i.e., 225 mmol m−2 yr−1 on a lake-area basis). Denitrification and photochemical and microbial decomposition of DOC are the most important in-lake H+ consuming processes (50 and 39%, respectively), while hydrolysis of Ali (from tributaries and photochemically liberated from Alo) is the dominant in-lake H+ generating process. Because the trends in water chemistry and H+ balance in the catchment-lake system are increasingly related to variability in NO3 and DOC leaching, they have become sensitive to climate-related factors (drought, elevated runoff) and forest damage that significantly modify the leaching of these anions. During the study period, increased exports of NO3 (accompanied by Ali and base cations) from the Čertovo catchment occurred after a dry and hot summer, after forest damage, and during elevated winter runoff. Increasing DOC export due to decreasing acid deposition was further elevated during years with higher runoff (and especially during events with lateral flow), and was accompanied by P, TON, and Alo leaching. The climate-related processes, which originally “only” confounded chemical trends in waters recovering from acidification, may soon become the dominant variables controlling water composition in N-saturated catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号