首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxoplasma gondii is a worldwide prevalent parasite, affecting a wide range of mammals and human beings. Little information is available about the distribution of genetic diversity of T. gondii infection in minks (Neovison vison). This study was conducted to estimate the prevalence and genetic characterization of T. gondii isolates from minks in China. A total of 418 minks brain tissue samples were collected from Jilin and Hebei provinces, northern China. Genomic DNA were extracted and assayed for T. gondii infection by semi-nested PCR of B1 gene. The positive DNA samples were typed at 10 genetic markers (SAG1, SAG2 (5''+3'' SAG2, alter.SAG2), SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. 36 (8.6%) of 418 DNA samples were overall positive for T. gondii. Among them, 5 samples were genotyped at all loci, and 1 sample was genotyped for 9 loci. In total, five samples belong to ToxoDB PCR-RFLP genotype#9, one belong to ToxoDB genotye#3. To our knowledge, this is the first report of genetic characterization of T. gondii in minks in China. Meanwhile, these results revealed a distribution of T. gondii infection in minks in China. These data provided base-line information for controlling T. gondii infection in minks.  相似文献   

2.
IntroductionInfection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking.MethodsHere we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice.ResultsSystemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii.ConclusionIn conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection.  相似文献   

3.
Recent studies have demonstrated that strains of Toxoplasma gondii in Brazil are frequently different from those detected in other countries, thus making an accurate phylogenetic analysis difficult. The aim of this study was to genetically characterize T. gondii samples from sheep raised in southern Bahia and intended for human consumption, by means of PCR–RFLP and sequencing techniques. Experimental samples were obtained from 200 sheep brains purchased at butcher's shops in Itabuna, Bahia, Brazil. In total, three samples (#54, #124 and #127) were T. gondii-positive. The application of multilocus PCR–RFLP using ten molecular markers (SAG1, SAG2, SAG3, BTUB, c22-8, PK1, GRA6, L358, c-29-2 and Apico) revealed a single genotype common to all samples of this study, which differed from any other published T. gondii genotypes. An atypical allele was detected in the L358 genetic marker; this has not previously been shown in any other South American T. gondii isolates. Phylogenetic analysis on the sequences from multilocus PCR sequencing revealed that these three samples were classified into the same lineage. Extensive indel regions were detected in the Apico genetic marker. Together, our findings revealed a new Brazilian T. gondii genotype. Further research should be conducted to enrich the database of Brazilian T. gondii genotypes from different regions. This will make it possible to understand the phylogenetic relationship between isolates.  相似文献   

4.
Toxoplasma gondii parasites present strong but geographically varied signatures of population structure. Populations sampled from Europe and North America have commonly been defined by over-representation of a small number of clonal types, in contrast to greater diversity in South America. The occurrence and extent of genetic diversity in African T. gondii populations remains understudied, undermining assessments of risk and transmission. The present study was designed to establish the occurrence, genotype and phylogeny of T. gondii in meat samples collected from livestock produced for human consumption (free-range chickens, n = 173; pigs, n = 211), comparing with T. gondii detected in blood samples collected from seropositive pregnant women (n = 91) in Benue state, Nigeria. The presence of T. gondii DNA was determined using a published nested polymerase chain reaction, targeting the 529 bp multicopy gene element. Samples with the highest parasite load (assessed using quantitative PCR) were selected for PCR-restriction fragment length polymorphism (PCR-RFLP) targeting the surface antigen 3 (SAG3), SAG2 (5’ and 3’), beta-tubulin (BTUB) and dense granule protein 6 (GRA6) loci, and the apicoplast genome (Apico). Toxoplasma gondii DNA was detected in all three of the populations sampled, presenting 30.6, 31.3 and 25.3% occurrence in free-range chickens, pigs and seropositive pregnant women, respectively. Quantitative-PCR indicated low parasite occurrence in most positive samples, limiting some further molecular analyses. PCR-RFLP results suggested that T. gondii circulating in the sampled populations presented with a type II genetic background, although all included a hybrid type I/II or II/III haplotype. Concatenation of aligned RFLP amplicon sequences revealed limited diversity with nine haplotypes and little indication of host species-specific or spatially distributed sub-populations. Samples collected from humans shared haplotypes with free-range chickens and/or pigs. Africa remains under-explored for T. gondii genetic diversity and this study provides the first detailed definition of haplotypes circulating in human and animal populations in Nigeria.  相似文献   

5.
Laboratory diagnostics of toxoplasmosis depends primarily on serological methods detecting specific antibodies. Since these methods do not always enable specific and sensitive recognition of the infection and phase of toxoplasmosis, the search for new diagnostic tools continues. Recombinant antigens promise a new alternative in diagnostics of Toxoplasma gondii infections. In this work the usefulness of six recombinant T. gondii antigens: GRA1, GRA6, GRA7, p35, SAG1, and SAG2 in the detection of primary murine toxoplasmosis was evaluated. Sera obtained from infected mice differing in their natural susceptibility to T. gondii infection, BALB/c (relatively resistant) and C57BL/6 (relatively susceptible), were tested using ELISA. During acute infection high response to GRA7, GRA6, and p35 antigens was noticed, whereas a strong reactivity with surface antigens SAG1 and SAG2 was characteristic for chronic toxoplasmosis. Our results show that the recombinant antigens are useful in distinguishing between acute and chronic toxoplasmosis regardless of the genetically determined susceptibility of the host.  相似文献   

6.
The prevalence and genotype of Toxoplasma gondii infection in dogs in Henan Province, Central China was investigated. A total of 125 blood samples were collected from pet dogs during April to June 2013, and all samples were examined by indirect hemagglutination antibody test (IHA) and nested PCR. The overall T. gondii prevalence in pet dogs was 24.0% (30/125), with 20.8% (26/125) in IHA and 10.4% (13/125) in PCR, respectively. No statistical associations were found between animal gender and age and the prevalence of T. gondii infection. Thirteen positive DNA samples were genotyped using 11 PCR-RFLP markers, including SAG1, (3’+5’) SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico. Of these, only 2 samples were genotyped with complete data for all loci, and a novel genotype (type III at SAG3 and GRA6 loci, and type I at other loci) was identified. This is the first report of genetic characterization of T. gondii infection in dogs in China.  相似文献   

7.
There are three major clonal lineages, types I, II, and III, of Toxoplasma gondii known to cause human toxoplasmosis worldwide. Toxoplasma gondii infections have, however, not been genotyped in Ghana. This study detected the clonal types infecting immune compromised and immune competent individuals in Accra, Ghana. Blood samples were obtained from 148 HIV seropositive pre-antiretroviral therapy individuals (0  CD4+ T-cell count/μl blood ≤ 200) at the Fevers Unit and 149 HIV seronegative apparently healthy blood donors at the blood bank, all of the Korle-Bu Teaching Hospital. Genomic DNA was extracted and multilocus genotyping conducted by nested PCR-RFLP analysis using GRA6, SAG3, and BTUB gene markers. Among the HIV seropositive participants, 54.7% (81/148) were T. gondii DNA positive for any of the markers. Out of the 81, 42.0% (34) were positive for SAG3 only, 30.9% (25) for GRA6 only, 24.7% (20) for both SAG3 and GRA6, and 2.5% (2) for SAG3, GRA6, and BTUB. Overall, 93.8% of the positives were of clonal type II, 1.2% type I, while 4.9% (4) were atypical or mixed types (I and II). In the healthy blood donors, prevalence of T. gondii DNA positivity was 3.4% (5/149) by SAG3 and/or GRA6; among them, 60.0% (3/5) were type I, and the remaining 40.0%, type II. This study showed a relatively high prevalence of active T. gondii infections in immune compromised patients and low prevalence in immune competent individuals in Accra. Type II was highly prevalent. Detection of T. gondii in blood donors raises public health concerns and screening for T. gondii should be considered.  相似文献   

8.
Australia is geographically isolated and possesses a remarkable diversity of wildlife species. Marsupials are highly susceptible to infection with the cosmopolitan parasite Toxoplasma gondii. Of 46 marsupials screened for T. gondii by multilocus PCR-DNA sequencing at polymorphic genes (B1, SAG3, GRA6, GRA7), 12 were PCR-positive; the majority (67%; 9/12) were infected by non-archetypal Type II-like or atypical strains. Six novel alleles were detected at B1, indicating greater diversity of genotypes than previously envisaged. Two isolates lethal to marsupials, were avirulent to mice. The data support the conclusion that Australia’s isolation may have favoured the persistence of non-archetypal ancestral genotypes.  相似文献   

9.
Toxoplasma gondii(T. gondii) -infected B lymphoma cells presentT. gondiiantigens in the context of major histocompatibility complex molecules toT. gondii-specific CD8+cytotoxic T cells (CTL). HLA-A2 molecules ofT. gondii-infected human cells have been shown to be used in presenting T. gondiiantigens to CD8+CTL. SAG1, one of the major antigenic molecules ofT. gondii,is an antigen forT. gondii-specific CTL, and represents a possible basis for vaccines. The direct binding of nonamer SAG1 peptides to HLA-A2 was assayed here using an automated biosensor system with a sensor for surface plasmon resonance detection. The antigenicity of synthetic SAG1 peptides toT. gondii-specific CD8+CTL also was assayed. The present study found a high correlation between the binding ability of synthetic SAG1 peptides to HLA-A2 and the antigenicity of peptides toT. gondii-infected cell-specific CD8+CTL.  相似文献   

10.
Serologic tests are widely accepted for diagnosing Toxoplasma gondii but purification and standardization of antigen needs to be improved. Recently, surface tachyzoite and bradyzoite antigens have become more attractive for this purpose. In this study, diagnostic usefulness of 3 recombinant antigens (SAG1, SAG2, and SAG3) were evaluated, and their efficacy was compared with the available commercial ELISA. The recombinant plasmids were transformed to JM109 strain of Escherichia coli, and the recombinants were expressed and purified. Recombinant SAG1, SAG2, and SAG3 antigens were evaluated using different groups of sera in an ELISA system, and the results were compared to those of a commercial IgG and IgM ELISA kit. The sensitivity and specificity of recombinant surface antigens for detection of anti-Toxoplasma IgG in comparison with commercially available ELISA were as follows: SAG1 (93.6% and 92.9%), SAG2 (100.0% and 89.4%), and SAG3 (95.4% and 91.2%), respectively. A high degree of agreement (96.9%) was observed between recombinant SAG2 and commercial ELISA in terms of detecting IgG anti-Toxoplasma antibodies. P22 had the best performance in detecting anti-Toxoplasma IgM in comparison with the other 2 recombinant antigens. Recombinant SAG1, SAG2, and SAG3 could all be used for diagnosis of IgG-specific antibodies against T. gondii.  相似文献   

11.

Background

Recent population structure studies of T. gondii revealed that a few major clonal lineages predominated in different geographical regions. T. gondii in South America is genetically and biologically divergent, whereas this parasite is remarkably clonal in North America and Europe with a few major lineages including Types I, II and III. Information on genotypes and mouse virulence of T. gondii isolates from China is scarce and insufficient to investigate its population structure, evolution, and transmission.

Methodology/Principal Findings

Genotyping of 23 T. gondii isolates from different hosts using 10 markers for PCR-restriction fragment length polymorphism analyses (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) revealed five genotypes; among them three genotypes were atypical and two were archetypal. Fifteen strains belong to the Chinese 1 lineage, which has been previously reported as a widespread lineage from swine, cats, and humans in China. Two human isolates fall into the type I and II lineages and the remaining isolates belong to two new atypical genotypes (ToxoDB#204 and #205) which has never been reported in China. Our results show that these genotypes of T. gondii isolates are intermediately or highly virulent in mice except for the strain TgCtwh6, which maintained parasitemia in mice for 35 days post infection although it possesses the uniform genotype of Chinese 1. Additionally, phylogenetic network analyses of all isolates of genotype Chinese 1 are identical, and there is no variation based on the sequence data generated for four introns (EF1, HP2, UPRT1 and UPRT7) and two dense granule proteins (GRA6 and GRA7).

Conclusion/Significance

A limited genetic diversity was found and genotype Chinese 1 (ToxoDB#9) is dominantly circulating in mainland China. The results will provide a useful profile for deep insight to the population structure, epidemiology and biological characteristics of T. gondii in China.  相似文献   

12.
Due to their ground-feeding behaviour, free-ranging chickens and turkeys are exposed to oocysts and are good indicators of the presence of Toxoplasma gondii in the environment. In addition, poultry may become infected by ingestion of tissues of infected intermediate hosts such as small rodents. Free-ranging poultry are considered an important source of T. gondii infection in humans, especially in developing countries. Knowledge on T. gondii genotypes in infected animals and humans is important for understanding the epidemiology of T. gondii infections. The aim of the present study was to analyse the ability of experimentally infected turkeys and chickens to develop a T. gondii clonal type-specific antibody response (IgY) after i.v. inoculation with tachyzoites of three T. gondii clonal lineages, types I, II and III. A peptide microarray displaying a panel of 101 different synthetic peptides was used for serotyping. Peptide sequences were derived from polymorphic regions of 16?T. gondii proteins (GRA1, GRA3-7, SAG1, SAG2A, SAG3, SAG4, SRS1, SRS2, ROP1, NTPase I and NTPase III and BSR4). The array was probed with 120 sera from experimentally infected chickens and turkeys inoculated with different doses of T. gondii tachyzoites (104, 103 and 102) collected from isolates representative for T. gondii clonal types I (RH), II (ME49) or III (NED) and uninfected controls. After screening of the peptides with reference sera from chickens and turkeys, and evaluation of data by Receiver Operating Characteristics analysis, 41 and 40 peptides were identified that appeared suitable to detect type-specific reactions with sera collected at 2, 5, 7 and 9?weeks p.i. Selected peptides allowed the identification of T. gondii clonal types, until 9?week p.i., which the chickens or turkeys had been inoculated with. At 9?weeks p.i., a high proportion of the experimentally infected chickens (67% (12/18)) and turkeys (61% (11/18)) no longer reacted with the selected peptides. Serotyping of the infection in individual chickens or turkeys was only possible when the whole peptide panel was applied. Clonal type-specific antibody responses were dynamic in both poultry species and depended on the individual animal and the time after infection.  相似文献   

13.
Early diagnosis of Toxoplasma gondii infection before the formation of tissue cysts is vital for treatment, as drugs available for toxoplasmosis cannot kill bradyzoites contained in the cysts. However, current methods, such as antibody-based ELISA, are ineffective for detection of early infection. Here, we developed an interferon-gamma release assay (IGRA), measuring the IFN-γ released by T lymphocytes stimulated by Toxoplasma antigen peptides in vitro, for the detection of T. gondii infection in mice. Splenocytes isolated from infected mice were stimulated by peptides derived from dense granule proteins GRA4 and GRA6 and rhoptry protein ROP7, and released IFN-γ was measured by ELISA. Results showed that both acute and chronic infection could be detected by IGRA. More importantly, IGRA detected infection as early as the third day post infection; while serum IgM and IgG were detected 9 days and 13 days post infection, respectively. Our findings demonstrated that an IGRA-positive and ELISA-negative sample revealed an early infection, indicating the combination of IGRA and ELISA can be employed for the early diagnosis of T. gondii infection in human beings, cats and livestock.  相似文献   

14.
The prevalence of Toxoplasma gondii infection in birds has epidemiological significance because birds are indeed considered as a good indicator of environmental contamination by T. gondii oocysts. In this study, the prevalence of T. gondii in 313 house sparrows in Lanzhou, northwestern China was assayed by the modified agglutination test (MAT). Antibodies to T. gondii were positive in 39 (12.46%) of 313 samples (MAT titer ≥ 1:5). Tissues of heart, brain, and lung from the 39 seropositive house sparrows were tested for T. gondii DNA, 11 of which were found to be positive for the T. gondii B1 gene by PCR amplification. These positive DNA samples were typed at 9 genetic markers, including 8 nuclear loci, i.e., SAG1, 5''- and 3''-SAG2, alternative SAG2, SAG3, GRA6, L358, PK1, c22-8 and an apicoplast locus Apico. Of them, 4 isolates were genotyped with complete data for all loci, and 2 genotypes (Type II variants; ToxoDB #3 and a new genotype) were identified. These results showed that there is a potential risk for human infection with T. gondii in this region. To our knowledge, this is the first report of T. gondii seroprevalence in house sparrows in China.  相似文献   

15.
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.  相似文献   

16.
Toxoplasma gondii atypical type II genotype was diagnosed in a pet peach-faced lovebird (Agapornis roseicollis) based on histopathology, immunohistochemistry, and multilocus DNA typing. The bird presented with severe neurological signs, and hematology was suggestive of chronic granulomatous disease. Gross post-mortem examination revealed cerebral hemorrhage, splenomegaly, hepatitis, and thickening of the right ventricular free wall. Histologic sections of the most significant lesions in the brain revealed intralesional protozoan organisms associated with malacia, spongiform changes, and a mild histiocytic response, indicative of diffuse, non-suppurative encephalitis. Immunohistochemistry confirmed the causative organisms to be T. gondii. DNA isolated from the brain was used to confirm the presence of T. gondii DNA. Multilocus genotyping based on SAG1, altSAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico markers demonstrated the presence of ToxoDB PCR-RFLP genotype #3 and B1 gene as atypical T. gondii type II. The atypical type II strain has been previously documented in Australian wildlife, indicating an environmental transmission route.  相似文献   

17.

Background

Early diagnosis of reactivated Chagas disease in HIV patients could be lifesaving. In Latin America, the diagnosis is made by microscopical detection of the T. cruzi parasite in the blood; a diagnostic test that lacks sensitivity. This study evaluates if levels of T. cruzi antigens in urine, determined by Chunap (Chagas urine nanoparticle test), are correlated with parasitemia levels in T. cruzi/HIV co-infected patients.

Methodology/Principal Findings

T. cruzi antigens in urine of HIV patients (N = 55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. Reactivation of Chagas disease was defined by the observation of parasites in blood by microscopy. Parasitemia levels in patients with serology positive for Chagas disease were classified as follows: High parasitemia or reactivation of Chagas disease (detectable parasitemia by microscopy), moderate parasitemia (undetectable by microscopy but detectable by qPCR), and negative parasitemia (undetectable by microscopy and qPCR). The percentage of positive results detected by Chunap was: 100% (7/7) in cases of reactivation, 91.7% (11/12) in cases of moderate parasitemia, and 41.7% (5/12) in cases of negative parasitemia. Chunap specificity was found to be 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (7/7). Antigenuria levels were 36.08 times (95% CI: 7.28 to 64.88) higher in patients with CD4+ lymphocyte counts below 200/mL (p = 0.016). No significant differences were found in HIV loads and CD8+ lymphocyte counts.

Conclusion

Chunap shows potential for early detection of Chagas reactivation. With appropriate adaptation, this diagnostic test can be used to monitor Chagas disease status in T. cruzi/HIV co-infected patients.  相似文献   

18.
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite’s life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.  相似文献   

19.
The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell.  相似文献   

20.
Recent studies have demonstrated that, in Brazil and South America, strains of Toxoplasma gondii are often genotypically and biologically different from those found in countries on other continents. The objective of this study was to genotypically characterize T. gondii isolates from naturally infected sheep in herds in the southern region of the state of Rio Grande do Sul, Brazil, by means of the polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP). Five T. gondii isolates obtained from sheep in five municipalities in the state of Rio Grande do Sul were used. Application of multilocus PCR-RFLP multilocus using 12 genetic markers (SAG1, 5′3′ SAG2, alt. SAG2, SAG3, BTUB, c22-8, c29-2, GRA6, L358, PK1, APICO and CS3) revealed four different genotypes in the five isolates studied: clonal type II (TgOvBrRS4), type BrIV (TgOvBrRS2 and TgOvBrRS3) and two new non-archetypal genotypes, ToxoDB-RFLP#270 and #271 (TgOvBrRS1 and TgOvBrRS5, respectively). The genotype structure found in the T. gondii isolates from naturally infected sheep in the southern region of Brazil was revealed to have high diversity. This study confirms the presence of rare circulation of the clonal type II genotype in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号