首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
3.
DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, thus ICL-inducing agents such as psoralen, are clinically useful chemotherapeutics. Psoralen-modified triplex-forming oligonucleotides (TFOs) have been used to target ICLs to specific genomic sites to increase the selectivity of these agents. However, how TFO-directed psoralen ICLs (Tdp-ICLs) are recognized and processed in human cells is unclear. Previously, we reported that two essential nucleotide excision repair (NER) protein complexes, XPA–RPA and XPC–RAD23B, recognized ICLs in vitro, and that cells deficient in the DNA mismatch repair (MMR) complex MutSβ were sensitive to psoralen ICLs. To further investigate the role of MutSβ in ICL repair and the potential interaction between proteins from the MMR and NER pathways on these lesions, we performed electrophoretic mobility-shift assays and chromatin immunoprecipitation analysis of MutSβ and NER proteins with Tdp-ICLs. We found that MutSβ bound to Tdp-ICLs with high affinity and specificity in vitro and in vivo, and that MutSβ interacted with XPA–RPA or XPC–RAD23B in recognizing Tdp-ICLs. These data suggest that proteins from the MMR and NER pathways interact in the recognition of ICLs, and provide a mechanistic link by which proteins from multiple repair pathways contribute to ICL repair.  相似文献   

4.
DNA interstrand crosslinks (ICLs), inhibit DNA metabolism by covalently linking two strands of DNA and are formed by antitumor agents such as cisplatin and nitrogen mustards. Multiple complex repair pathways of ICLs exist in humans that share translesion synthesis (TLS) past a partially processed ICL as a common step. We have generated site-specific major groove ICLs and studied the ability of Y-family polymerases and Pol ζ to bypass ICLs that induce different degrees of distortion in DNA. Two main factors influenced the efficiency of ICL bypass: the length of the dsDNA flanking the ICL and the length of the crosslink bridging two bases. Our study shows that ICLs can readily be bypassed by TLS polymerases if they are appropriately processed and that the structure of the ICL influences which polymerases are able to read through it.  相似文献   

5.
Repair of DNA interstrand cross-links   总被引:24,自引:0,他引:24  
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.  相似文献   

6.
7.
8.
9.
10.
DNA interstrand cross-links (ICLs) present a formidable challenge to the cellular repair apparatus, but to date ICL repair pathways have proved difficult to dissect genetically. It now appears that this is partly the result of a high degree of cell cycle phase selectivity in the choice of ICL pathway employed. Here we review recent results showing that Polymerase ζ, aspecialised translesion polymerase, plays an important role during ICL repair in G1 phase yeast cells, and that PCNA modification by ubiquitin is a key regulator of its activity. Given that this reaction can occur outside the context of S-phase, these results imply a more general role for PCNA modification in the control of DNA repair pathways through the cell cycle, which is dependent on the type of damage or repair intermediate encountered.  相似文献   

11.
12.
Drugs that produce covalent interstrand cross-links (ICLs) in DNA remain central to the treatment of cancer, but the cell cycle checkpoints activated by ICLs have received little attention. We have used the fission yeast, Schizosaccharomyces pombe, to elucidate the checkpoint responses to the ICL-inducing anticancer drugs nitrogen mustard and mitomycin C. First we confirmed that the repair pathways acting on ICLs in this yeast are similar to those in the main organisms studied to date (Escherichia coli, budding yeast, and mammalian cells), principally nucleotide excision repair and homologous recombination. We also identified and disrupted the S. pombe homologue of the Saccharomyces cerevisiae SNM1/PSO2 ICL repair gene and found that this activity is required for normal resistance to cross-linking agents, but not other forms of DNA damage. Survival and biochemical analysis indicated a key role for the "checkpoint Rad" family acting through the chk1-dependent DNA damage checkpoint in the ICL response. Rhp9-dependent phosphorylation of Chk1 correlates with G(2) arrest following ICL induction. In cells able to bypass the G(2) block, a second-cycle (S-phase) arrest was observed. Only a transient activation of the Cds1 DNA replication checkpoint factor occurs following ICL formation in wild-type cells, but this is increased and persists in G(2) arrest-deficient mutants. This likely reflects the fraction of cells escaping the G(2) damage checkpoint and arresting in the subsequent S phase due to ICL replication blocks. Disruption of cds1 confers increased resistance to ICLs, suggesting that this second-cycle S-phase arrest might be a lethal event.  相似文献   

13.
DNA interstrand crosslinks (ICLs) are highly toxic lesions that covalently link both strands of DNA and distort the DNA helix. Crosslinking agents have been shown to stall DNA replication and failure to repair ICL lesions before encountered by replication forks may induce severe DNA damage. Most knowledge of the ICL repair process has been revealed from studies in bacteria and cell extracts. However, for mammalian cells the process of ICL repair is still unclear and conflicting data exist. In this study we have explored the fate of psoralen-induced ICLs during replication, by employing intact mammalian cells and novel techniques. By comparative studies distinguishing between effects by monoadducts versus ICLs, we have been able to link the block of replication to the ICLs induction. We found that the replication fork was equally blocked by ICLs in wild-type cells as in cells deficient in ERCC1/XPF and XRCC3. The formation of ICL induced double strand breaks (DSBs), detected by formation of 53PB1 foci, was equally induced in the three cell lines suggesting that these proteins are involved at a later step of the repair process. Furthermore, we found that forks blocked by ICLs were neither bypassed, restarted nor restored for several hours. We propose that this process is different from that taking place following monoadduct induction by UV-light treatment where replication bypass is taking place as an early step. Altogether our findings suggest that restoration of an ICL blocked replication fork, likely initiated by a DSB occurs relatively rapidly at a stalled fork, is followed by restoration, which seems to be a rather slow process in intact mammalian cells.  相似文献   

14.
15.
Several proteins in the BRCA‐Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA‐FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA‐FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is suppressed by depletion of the upstream mismatch recognition factor MSH2. MSH2 depletion suppresses an aberrant DNA damage response, restores cell cycle progression, and promotes ICL resistance through a Rad18‐dependent mechanism. MSH2 depletion also suppresses ICL sensitivity in cells deficient for BRCA1 or FANCD2, but not FANCA. Rescue by Msh2 loss was confirmed in Fancd2‐null primary mouse cells. Thus, we propose that regulation of MSH2‐dependent DNA damage response underlies the importance of interactions between BRCA‐FA and MMR pathways.  相似文献   

16.
17.
18.
19.
Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号