首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA repair is essential for maintaining genomic integrity in cells. The dependence of cancer cell survival on proper DNA repair provides an opportunity to treat defective tumors by DNA damaging agents. Not only Wnt signaling has important functions in controlling gene expression, as well as cell polarity, adhesion and behavior, it also highly interacts with DNA damage response (DDR) in different levels. Furthermore, oxidative stress, which is responsible for majority of DNA lesions, affects Wnt signaling in different ways. A better understanding of the cross-talk between these pathways and events could provide strategies for treatment of cancer cells with deficient DNA repair capacity. As such, we will give a brief overview of the importance of the DNA repair machinery, signaling mechanisms of Wnt/β-catenin pathway, and DDR. We will further review the interactions between Wnt signaling and DDR, and the impact of oxidative stress on Wnt signaling. Finally, Wnt signaling is discussed as a potential treatment strategy for cancer.  相似文献   

3.
DNA damage response (DDR) is a regulatory system responsible for maintaining genome integrity and stability, which can sense and transduce DNA damage signals. The severity of damage appears to determine DDRs, which can include damage repair, cell-cycle arrest, and apoptosis. Furthermore, defective components in DNA damage and repair machinery are an underlying cause for the development and progression of various types of cancers. Increasing evidence indicates that there is an association between trace elements and DDR/repair mechanisms. In fact, trace elements seem to affect mediators of DDR. Besides, it has been revealed that oxidative stress (OS) and trace elements are associated with cancer development. In this review, we discuss the role of some critical trace elements in the risk of cancer. In addition, we provide a brief introduction on DDR and OS in cancer. Finally, we will further review the interactions between some important trace elements including selenium, zinc, chromium, cadmium, and arsenic, and DDR, and OS in cancer.  相似文献   

4.
5.
DNA damage response (DDR) serves as an integrated cellular network to detect cellular stress and react by activating pathways responsible for halting cell cycle progression, stimulating DNA damage repair, and initiating apoptosis. Efficient DDR protects cells from genomic instability while defective DDR can allow DNA lesions to go unrepaired, causing permanent mutations that will affect future generations of cells and possibly cause disease conditions such as cancer. Therefore, DDR mechanisms must be tightly regulated in order to ensure organismal health and viability. One major way of DDR regulation is ubiquitination, which has been long known to control DDR protein localization, activity, and stability. The reversal of this process, deubiquitination, has more recently come to the forefront of DDR research as an important new angle in ubiquitin-mediated regulation of DDR. As such, deubiquitinases have emerged as key factors in DDR. Importantly, deubiquitinases are attractive small-molecule drug targets due to their well-defined catalytic residues that provide a promising avenue for developing new cancer therapeutics. This review focuses on the emerging roles of deubiquitinases in various DNA repair pathways.  相似文献   

6.
7.
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.  相似文献   

8.
9.
10.
11.
The rapid ubiquitination of chromatin surrounding DNA double-stranded breaks (DSB) drives the formation of large structures called ionizing radiation-induced foci (IRIF), comprising many DNA damage response (DDR) proteins. This process is regulated by RNF8 and RNF168 ubiquitin ligases and is thought to be necessary for DNA repair and activation of signaling pathways involved in regulating cell cycle checkpoints. Here we demonstrate that it is possible to interfere with ubiquitin-dependent recruitment of DDR factors by expressing proteins containing ubiquitin binding domains (UBDs) that bind to lysine 63-linked polyubiquitin chains. Expression of the E3 ubiquitin ligase RAD18 prevented chromatin spreading of 53BP1 at DSBs, and this phenomenon was dependent upon the integrity of the RAD18 UBD. An isolated RAD18 UBD interfered with 53BP1 chromatin spreading, as well as other important DDR mediators, including RAP80 and the BRCA1 tumor suppressor protein, consistent with the model that the RAD18 UBD is blocking access of proteins to ubiquitinated chromatin. Using the RAD18 UBD as a tool to impede localization of 53BP1 and BRCA1 to repair foci, we found that DDR signaling, DNA DSB repair, and radiosensitivity were unaffected. We did find that activated ATM (S1981P) and phosphorylated SMC1 (a specific target of ATM) were not detectable in DNA repair foci, in addition to upregulated homologous recombination repair, revealing 2 DDR responses that are dependent upon chromatin spreading of certain DDR factors at DSBs. These data demonstrate that select UBDs containing targeting motifs may be useful probes in determining the biological significance of protein–ubiquitin interactions.  相似文献   

12.
Lan Y  Su N  Shen Y  Zhang R  Wu F  Cheng Z  Wang J  Zhang X  Guo X  Lei C  Wang J  Jiang L  Mao L  Wan J 《BMC genomics》2012,13(1):264
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) modulate gene expression in different tissues and at diverse developmental stages, including grain development in japonica rice. To identify novel miRNAs in indica rice and to study their expression patterns during the entire grain filling process, small RNAs from all stages of grain development were sequenced and their expression patterns were studied using customized miRNA chips. RESULTS: A total of 21 conserved and 91 non-conserved miRNA families were found in developing indica grains. We also discovered 11 potential novel miRNAs based on the presence of their miRNA*s. Expression patterns of these identified miRNAs were analyzed using customized miRNA chips. The results showed that during the filling phase about half of the detected miRNAs were up-regulated, whereas the remainder were down-regulated. Predicted targets of differentially expressed miRNAs may participate in carbohydrate metabolism, hormone signaling and pathways associated with seed maturity, suggesting potentially important roles in rice grain development. CONCLUSIONS: This study is the first genome-wide investigation of miRNAs during the grain-filling phase of an indica variety of rice. The novel miRNAs identified might be involved in new miRNA regulatory pathways for grain development. The complexity of these miRNAs and their targets and interactions require further study to obtain a better understanding of the molecular mechanisms underlying grain development. Key words: miRNA, grain filling, indica rice.  相似文献   

13.
Maintenance of genome integrity and stability is a critical responsibility of the DNA damage response (DDR) within cells, such that any disruption in this kinase-based signaling pathway leads to development of various disorders, particularly cancer. The tumor suppressor P53-binding protein 1 (53BP1), as one of the main mediators of DDR, plays a pivotal role in orchestrating the choice of double-strand break (DSB) repair pathway and contains interaction surfaces for numerous DSB-responsive proteins. It has been extensively demonstrated that aberrant expression of 53BP1 contributes to tumor occurrence and development. 53BP1 loss of function in tumor tissues is also related to tumor progression and poor prognosis in human malignancies. Due to undeniable importance of this protein in various aspects of cancer initiation/progression, angiogenesis, metastasis and development of drug resistance, as well as its targeting in the treatment of cancer, this review focused on explaining the structure and function of 53BP1 and its contribution to cancer.  相似文献   

14.
Li X  Chen J  Hu X  Huang Y  Li Z  Zhou L  Tian Z  Ma H  Wu Z  Chen M  Han Z  Peng Z  Zhao X  Liang C  Wang Y  Sun L  Chen J  Zhao J  Jiang B  Yang H  Gui Y  Cai Z  Zhang X 《PloS one》2011,6(7):e22570

Background

Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA) in a single type of cancer.

Methodology

Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.

Principal Findings

Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of ‘key’ miRNAs may result in the global aberration of one or more pathways or processes as a whole.

Conclusions

This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or therapeutic applications.  相似文献   

15.
Archaeal DNA repair pathways are not well defined; in particular, there are no convincing candidate proteins for detection of DNA mismatches or the bulky lesions removed by excision repair pathways. Single-stranded DNA-binding proteins (SSBs) play a central role in DNA replication, recombination and repair. The crenarchaeal SSB is a monomer with a single oligonucleotide-binding fold for single-stranded DNA binding coupled to a flexible C-terminal tail reminiscent of bacterial SSB that mediates interactions with other proteins. We demonstrate that Sulfolobus solfataricus SSB can melt DNA containing a mismatch or DNA lesion specifically in vitro. We suggest that a potential role for SSB in archaea is the detection of DNA damage due to local destabilisation of the DNA double helix, followed by recruitment of specific repair proteins. Proteins interacting specifically with a single-stranded DNA:SSB complex include several known or putative DNA repair proteins and DNA helicases.  相似文献   

16.
胃癌是人类最常见的肿瘤之一,其发病机制尚不完全清楚.微小RNA(microRNA,miRNA)是一组最近发现的长度为22个核苷酸左右的非编码RNA,具有负性调控基因表达的功能.本文对miRNA在胃癌发生中的作用及其表达调控机制进行综述.不断有文献显示,miRNA在多种肿瘤(包括胃癌)的发生过程中发挥着重要作用.作者和其他研究人员发现,miRNA的表达异常(如:miR-421和miR-21的上调或/和miR-31和miR-218的下调等)与胃癌的发生相关,提示miRNA是胃癌发生的重要因素.目前,miRNA表达的分子机制尚未完全明了.最近研究较清楚地显示,miRNA的表达受到DNA甲基化和组蛋白修饰等机制的调控.这说明,胃癌相关miRNA的表达水平受到表观遗传机制的调控。  相似文献   

17.
Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational modification regulating various biological pathways including DNA damage repair (DDR). Rapid turnover of PARylation is critically important for an optimal DNA damage response and maintaining genomic stability. Recent studies show that PARylation is tightly regulated by a group of enzymes that can erase the ADP-ribose (ADPR) groups from target proteins. The aim of this review is to present a comprehensive understanding of dePARylation enzymes, their substrates and roles in DDR. Special attention will be laid on the role of these proteins in the development of cancer and their feasibility in anticancer therapeutics.  相似文献   

18.
19.
20.
Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号