共查询到20条相似文献,搜索用时 20 毫秒
1.
The Naticidae is a species-rich family of predatory marine gastropods with substantial interspecific morphological diversity. The classification of the Naticidae has been traditionally based on morphology data, but the phylogenetic relationships within the family are debated due to conflicting molecular results, especially regarding the monophyly of subfamilies Polinicinae and Naticinae. To further resolve the phylogenetic controversies within the Naticidae, we undertake a phylogenetic approach using 14 newly sequenced complete or nearly complete (only lacking a control region) mitochondrial genomes. Both the maximum likelihood and Bayesian inference analyses supported monophyly of the Polinicinae, but paraphyly of the Naticinae due to the placement of the enigmatic genus Notocochlis. The ancestral character reconstruction suggests that the operculum, a character that currently defines the two subfamilies, evolved from an ancestor with a calcareous operculum in the evolutionary history of naticids. In addition, the chronogram estimates that naticids was originated in late Triassic (about 227 million years ago), consistent with previous hypotheses. Our study highlights the importance of using complete mitochondrial genomes while reconstructing phylogenetic relationships within the Naticidae. The evolution scenario of the naticid operculum contributes new insights into the classification of Naticidae. 相似文献
2.
Mitochondrial phylogenomics reveals insights into taxonomy and evolution of Penaeoidea (Crustacea: Decapoda) 下载免费PDF全文
The taxonomy and phylogeny of Penaeoidea have long been fraught with controversy. Here, we carried out the first mitochondrial phylogenomic analysis on all the penaeoid families and tribes, including nine newly sequenced and 14 published mitogenomes, towards elucidating the phylogeny and evolutionary history of Penaeoidea. All these nine mitogenomes exhibit the pancrustacean ground pattern, except that Benthonectes filipes contains two additional clusters of tRNAAla, tRNAArg and tRNAAsn and an uncommon noncoding region. The resulted phylogenetic tree is generally well resolved with Benthesicymidae sister to Aristeidae, forming a clade with Solenoceridae. Contrary to traditional classification, this clade has a sister relationship with the tribe Penaeini of the family Penaeidae. The family Sicyoniidae is deeply nested within the penaeid tribe Trachypenaeini which forms a sister clade with the remaining penaeid tribe, Parapenaeini. As the family Penaeidae is recovered to be polyphyletic, the three tribes in Penaeidae are all elevated to familial status. On the other hand, the family Sicyoniidae is retained to accommodate Trachypenaeini because they are now synonyms and the former name is more senior. This work is the first molecular analysis concurring with the latest findings in fossil assessments showing that Parapeaneini is the most primitive in Penaeoidae. Our results also illustrate a shallow‐water origin and an onshore–offshore evolutionary shift in penaeoid shrimps. 相似文献
3.
啮总目包括啮虫目(皮虱和书虱)和虱目(羽虱和吸虱),是农业和医学等领域具有重要经济意义和研究价值的类群,目前已鉴定和描述的物种超过10 000个。啮总目昆虫线粒体基因组的变异性在昆虫各类群中最为剧烈,这些变异包括基因组的结构、基因排序、基因含量和链上分布等诸多方面。本文全面分析和总结了啮总目昆虫裂化线粒体基因组的进化属性,并结合两侧对称动物线粒体基因组的裂化特征重构了线粒体基因组环裂化的过程。引入“线粒体基因组核型”的概念来描述动物线粒体基因组丰富的变异程度。动物线粒体的染色体有减小的趋势,而线粒体基因组的裂化正是体现这种趋势的一种重要策略。同时,总结和探讨了目前具有争议的啮总目主要类群间的系统发育关系。本综述为啮总目昆虫线粒体基因组学、啮总目系统发生关系以及两侧对称动物线粒体基因组进化模式的研究提供一个新的视角。 相似文献
5.
R. Ji P. Cui F. Ding J. Geng H. Gao H. Zhang J. Yu S. Hu H. Meng 《Animal genetics》2009,40(4):377-382
The evolutionary relationship between the domestic bactrian camel and the extant wild two-humped camel and the factual origin of the domestic bactrian camel remain elusive. We determined the sequence of mitochondrial cytb gene from 21 camel samples, including 18 domestic camels (three Camelus bactrianus xinjiang , three Camelus bactrianus sunite , three Camelus bactrianus alashan , three Camelus bactrianus red , three Camelus bactrianus brown and three Camelus bactrianus normal ) and three wild camels ( Camelus bactrianus ferus ). Our phylogenetic analyses revealed that the extant wild two-humped camel may not share a common ancestor with the domestic bactrian camel and they are not the same subspecies at least in their maternal origins. Molecular clock analysis based on complete mitochondrial genome sequences indicated that the sub-speciation of the two lineages had begun in the early Pleistocene, about 0.7 million years ago. According to the archaeological dating of the earliest known two-humped camel domestication (5000–6000 years ago), we could conclude that the extant wild camel is a separate lineage but not the direct progenitor of the domestic bactrian camel. Further phylogenetic analysis suggested that the bactrian camel appeared monophyletic in evolutionary origin and that the domestic bactrian camel could originate from a single wild population. The data presented here show how conservation strategies should be implemented to protect the critically endangered wild camel, as it is the last extant form of the wild tribe Camelina. 相似文献
6.
We determined the nearly complete mitochondrial genome of Pseudosquilla ciliata (Crustacea, Stomatopoda), including all protein-coding genes and all but one of the transfer RNAs. There were no gene rearrangements
relative to the pattern shared by crustaceans and hexapods. Phylogenetic analysis using concatenated amino acid sequences
of the mitochondrial protein-coding genes confirmed a basal position of Stomatopoda among Eumalacostraca. Pancrustacean relationships
based on mitogenomic data were analyzed and are discussed in relation to crustacean and hexapod monophyly and hexapod affinities
to crustacean subtaxa. 相似文献
7.
眼镜王蛇线粒体基因组全序列分析 总被引:1,自引:0,他引:1
参照近缘物种线粒体基因序列共设计和合成了8对引物, 结合Ex Taq-PCR、TA克隆和步移测序技术, 文章首次获得眼镜王蛇线粒体基因组全序列(GenBank登录号: EU_921899)。该基因组全长17 267 bp, 共编码13个蛋白、2个rRNA、23个tRNA-- 其中tRNA-Ile基因发生了复制, 属于一种新的蛇类物种线粒体基因排列模式, 另外还含有2个非编码的富含AT的控制区。除了8个tRNA基因和1个蛋白基因由L链编码外, 其余均由H链编码, 其中H链编码基因的A和T含量接近, 而L链上A的含量则明显高于T。基于21种蛇合并的“12S+16S”rRNA基因序列的系统发育分析表明, 眼镜王蛇属与眼镜蛇属亲缘关系较近, 两者与环蛇属共同构成一个单系群。作为国内外眼镜王蛇线粒体基因组全序列的首次报道, 上述结果对于蛇类物种分子系统发育和进化研究具有重要意义。 相似文献
8.
该文测序了湾鳄的线粒体基因组全序列,全长为16,917bp。湾鳄mtDNA结构与其他脊椎动物相似,由22个tRNA,2个rRNA和13个蛋白质编码基因及1个非编码的控制区(D-loop)所组成。除NADH6和tRNAGln、tRNAAla、tRNAAsn、tRNACys、tRNATyr、tRNASer(UCN)、tRNAGlu、tRNAPro在L-链上编码之外,其余基因均在H-链编码。基因排列顺序与已测序的鳄类一致,这显示了鳄类线粒体基因排列顺序上的保守性。但鳄类线粒体基因排列顺序与脊椎动物的典型排列方式相比,有较大的差异,尤其是tRNAPhe基因的重排、tRNASer-tRNAHis-tRNALeu基因族的排列方式等。湾鳄mtDNA和已测序的鳄类一样,缺失轻链复制起始点(OLR)。基于17种鳄mtDNA控制区保守区,采用PAUP4.0最大简约法(Maximumparsimony,MP)构建MP树,邻接法(Neighbor-joiningmethod,NJ)构建NJ树,结果显示:食鱼鳄(Gavialisgangeticus)和假食鱼鳄(Tomistomaschlegelii)聚为一支后再与鳄科(Crocodylidae)的其他物种形成姐妹群,这与基于食鱼鳄和假食鱼鳄的线粒体全序列的分析结果一致,支持将食鱼鳄并入鳄科的观点。结果还支持非洲窄吻鳄(Crocodyluscataphractus)与鳄属(Crocodylus)构成姐妹群,可以单独划分为属的观点。 相似文献
9.
Phodopus roborovskii (subfamily Cricetinae) is widely distributed in the northern arid regions of China. This study reports its complete mitochondrial genome (mitogenome) for the first time. The complete sequence was 16,273 bp long, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and 1 major noncoding region. The base composition and codon usage were described. The putative origin of replication for the light strand (OL) of P. roborovskii was approximately 45 bp long and was highly conserved in the stem-loop and adjacent sequences, but the starting sequence of replication varied between genera among Rodentia. We analyzed the three domains of the D-loop region, and the results indicated that the central domain had higher G + C content and lower A + T content than two peripheral domains. Phylogenetic analyses indicated high resolution in four main divergent clades using mitogenomes data within Cricetidae. Within Cricetinae clade, P. roborovskii was at basal position which was in line with previous researches, and it shared a common ancestor with other extant hamsters. This work validated previous molecular and karyotype researches using mitogenomes data, and provided a set of useful data on phylogeny and molecular evolution in Cricetidae species. 相似文献
10.
Yan Yan Yuyu Wang Xingyue Liu Shaun L. Winterton Ding Yang 《International journal of biological sciences》2014,10(8):895-908
In the holometabolous insect order Neuroptera (lacewings), the cosmopolitan Myrmeleontidae (antlions) are the most species-rich family, while the closely related Nymphidae (split-footed lacewings) are a small endemic family from the Australian-Malesian region. Both families belong to the suborder Myrmeleontiformia, within which controversial hypotheses on the interfamilial phylogenetic relationships exist. Herein, we describe the complete mitochondrial (mt) genomes of an antlion (Myrmeleon immanis Walker, 1853) and a split-footed lacewing (Nymphes myrmeleonoides Leach, 1814), representing the first mt genomes for both families. These mt genomes are relatively small (respectively composed of 15,799 and 15,713 bp) compared to other lacewing mt genomes, and comprise 37 genes (13 protein coding genes, 22 tRNA genes and two rRNA genes). The arrangement of these two mt genomes is the same as in most derived Neuroptera mt genomes previously sequenced, specifically with a translocation of trnC. The start codons of all PCGs are started by ATN, with an exception of cox1, which is ACG in the M. immanis mt genome and TCG in N. myrmeleonoides. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN). The secondary structures of rrnL and rrnS are similar with those proposed insects and the domain I contains nine helices rather than eight helices, which is common within Neuroptera. A phylogenetic analysis based on the mt genomic data for all Neuropterida sequenced thus far, supports the monophyly of Myrmeleontiformia and the sister relationship between Ascalaphidae and Myrmeleontidae. 相似文献
11.
In this study, we successfully assembled the complete mitochondrial genome of the Amu Darya sturgeon Pseudoscaphirhynchus kaufmanni. Based on this mitochondrial genome and previously published mitochondrial genomes of members of the Acipenseridae family, we assessed the phylogenetic position of P. kaufmanni using maximum likelihood and Bayesian inference for phylogeny reconstruction. The resultant phylogenetic trees were well-resolved, with congruence between different phylogenetic methods. This robust phylogenetic analysis elucidated the relationship among the four acipenserid genera and strongly supported the division of the family into three main clades. Evaluation of molecular phylogeny using maximum likelihood and Bayesian analysis led to the following conclusions: (a) the most basal position within the Acipenseridae remains in the clade containing Acipenser oxyrinchus and Acipenser sturio; (b) the genus Scaphirhynchus belongs to the Atlantic clade and is a sister group of the remaining species of the clade; and (c) the close relationship between P. kaufmanni and Acipenser stellatus is well supported. 相似文献
12.
云斑车蝗线粒体基因组全序列测定与分析 总被引:2,自引:1,他引:2
采用长距 PCR 扩增及保守引物步移法并结合克隆测序测定并注释了云斑车蝗 Gastrimargus marmoratus (Thunberg)的线粒体基因组全序列。结果表明:云斑车蝗线粒体基因组全序列为15 904 bp(GenBank登录号为EU527334),A+T含量略高于非洲飞蝗Locusta migratoria,为76.04%,包括13个蛋白质编码基因,22个tRNA 基因,2个rRNA基因和一段1 057 bp的A+T富集区。蛋白质基因的起始密码子中,除COⅠ和ND5为TTG以外,均为昆虫典型的起始密码子ATN。ND5基因使用了不完全终止密码子T,其余基因均为典型的TAA或TAG。预测了22个tRNA基因的二级结构,发现tRNASer(AGN)缺少DHU臂, tRNASer(UGY)的反密码子环上有9个碱基。预测了云斑车蝗12S和16S rRNA二级结构,分别包括3个结构域30个茎环和6个结构域44个茎环。A+T富集区含有3个串联重复序列。 相似文献
13.
Overall phylogenetic relationships within the genus Pelargonium (Geraniaceae) were inferred based on DNA sequences from mitochondrial(mt)-encoded nad1 b/c exons and from chloroplast(cp)-encoded trnL (UAA) 5' exon-trnF (GAA) exon regions using two species of Geranium and Sarcocaulon vanderetiae as outgroups. The group II intron between nad1 exons b and c was found to be absent from the Pelargonium, Geranium, and Sarcocaulon sequences presented here as well as from Erodium, which is the first recorded loss of this intron in angiosperms. Separate phylogenetic analyses of the mtDNA and cpDNA data sets produced largely congruent topologies, indicating linkage between mitochondrial and chloroplast genome inheritance. Simultaneous analysis of the combined data sets yielded a well-resolved topology with high clade support exhibiting a basic split into small and large chromosome species, the first group containing two lineages and the latter three. One large chromosome lineage (x = 11) comprises species from sections Myrrhidium and Chorisma and is sister to a lineage comprising P. mutans (x = 11) and species from section Jenkinsonia (x = 9). Sister to these two lineages is a lineage comprising species from sections Ciconium (x = 9) and Subsucculentia (x = 10). Cladistic evaluation of this pattern suggests that x = 11 is the ancestral basic chromosome number for the genus. 相似文献
14.
直翅目昆虫线粒体基因组研究进展 总被引:1,自引:2,他引:1
本文总结了本实验室对40余种直翅目昆虫的线粒体基因组序列的研究方法和主要结果.直翅目线粒体基因组研究中最重要的发现包括:(1)在直翅目昆虫线粒体基因组中发现了3种基因排列次序.蝗亚目除蜢总科外都具有DK排列.蜢总科的变色乌蜢为KD 排列,与蝗亚目其他总科不同,而与螽亚目昆虫的排序方式相同.已测出的螽亚目大多数昆虫的KD 排列顺序与典型节肢动物的完全相同,但在黄脸油葫芦Teleogryllus emma发生了tRNAGlu,tRNASer和tRNAAsn的倒置;(2)在疑钩额螽Ruspolia dubia中发现了一种到目前为止具有最短控制区(70 bp)的线粒体基因组;(3)采用多种方法分析了昆虫A+T富集区存在的调控序列和二级结构特征,获得了昆虫A+T富集区保守序列的一致结构.采用Z曲线分析蝗虫的A+T富集区,表明也存在与原核生物复制起点类似的信号;(4)构建了30种蝗虫12S rRNA和16S rRNA的二级结构.在昆虫线粒体基因组非编码链中发现了一些类tRNA结构和tRNA异构体;(5)构建了基于线粒体基因组数据的直翅目昆虫主要亚科以上分类单元之间的系统发育关系. 相似文献
15.
已经测定的昆虫线粒体基因组中, 直翅目草螽亚科的疑钩额螽Ruspolia dubia线粒体控制区长度最短, 仅70 bp。为此, 本研究采用L-PCR结合二次PCR扩增策略对另一种草螽亚科昆虫斑翅草螽Conocephalus maculates线粒体基因组序列进行了测定。序列注释发现: 斑翅草螽线粒体基因组序列全长15 898 bp, A+T含量为72.05%, 基因排列与典型的节肢动物线粒体基因组一致。全部蛋白质编码基因以典型的ATN作为起始密码子, 9个蛋白质编码基因具有完整的终止密码子, 其余4个以不完整的T作为终止信号。除trnSAGN外, 其余21个tRNAs均可折叠形成典型的三叶草结构, 依照Steinberg等(1997)线粒体特殊tRNA结构类型-9, trnSAGN的DHU臂形成一个7 nt环, 反密码子臂则长达9 bp, 含1个突起碱基, 而不是正常的5 bp。斑翅草螽与其他直翅目昆虫线粒体基因组的主要区别在于, 在trnSUCN和nad1, nad1和trnLCUN基因间各存在一段罕见的、大段的基因间隔序列, 长度分别为78 bp和360 bp。其中, 位于nad1和trnLCUN之间的基因间隔序列N链可形成一个包含完整起始、终止密码子(ATT/TAA)、编码103个氨基酸的未知开放阅读框。同义密码子使用偏好与线粒体基因组编码的tRNA反密码子匹配情况无关, 但与密码子第3位点的碱基组成紧密相关; 相对密码子使用频率(relative synonymous codon usage, RSCU)大于1的密码子, 其第3位点全部是A或T。在已经测定的直翅目昆虫线粒体基因组tRNAs中, 均存在一定数量的碱基错配, 且以G-U弱配对为主, 表明G-U配对在线粒体基因组中可能是一种正常的碱基配对形式。本研究测定的斑翅草螽线粒体基因组序列, 和先前已经测定的直翅目线粒体基因组序列一起, 可以为重建直翅目的进化历史提供数据资源。 相似文献
16.
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. Two factors inhibiting our understanding the evolution of gene rearrangement in bivalves are inadequate taxonomic sampling and failure to examine gene order in a phylogenetic framework. Here, we report the first complete nucleotide sequence (16,060 bp) of the mitochondrial (mt) genome of a North American freshwater bivalve, Lampsilis ornata (Mollusca: Paleoheterodonta: Unionidae). Gene order and mt genome content is examined in a comparative phylogenetic framework for Lampsilis and five other bivalves, representing five families. Mitochondrial genome content is shown to vary by gene duplication and loss among taxa and between male and female mitotypes within a species. Although mt gene arrangement is highly variable among bivalves, when optimized on an independently derived phylogenetic hypothesis, it allows for the reconstruction of ancestral gene order states and indicates the potential phylogenetic utility of the data. However, the interpretation of reconstructed ancestral gene order states must take in to account both the accuracy of the phylogenetic estimation and the probability of character state change across the topology, such as the presence/absence of atp8 in bivalve lineages. We discuss what role, if any, doubly uniparental inheritance (DUI) and recombination between sexual mitotypes may play in influencing gene rearrangement of the mt genome in some bivalve lineages. 相似文献
17.
A. G. Oleinik 《Russian Journal of Marine Biology》2000,26(6):432-438
Mutation rates of the mitochondrial and nuclear genomes of salmonid fishes were assessed on the basis of a phylogenetic study of 12 species representing four genera of the family Salmonidae. Analysis of the extent of divergence of the masu salmon Oncorhynchus masou and the Pacific trout Parasalmo suggests a high rate of mtDNA mutation in the masu salmon. However, the nuclear genome in this species has mutated relatively slowly. For the other 5 species of Pacific salmon, no discrepancy was found in the mutation rates of mitochondrial and nuclear DNA. Values of the absolute time of divergence of taxa, calculated for the two independently inherited parts of the salmonid genome, were approximately within the same range and coincided with those based on evolutionary hypotheses [1, 21]. 相似文献
18.
【目的】测定绿眼赛茧蜂Zele chlorophthalmus线粒体基因组全序列,分析其基因组结构及茧蜂科(Braconidae)部分类群的系统发育关系。【方法】利用Illumina MiSeq二代测序技术对绿眼赛茧蜂的线粒体基因组进行测序,对基因组序列进行拼装、注释,分析其结构特点和碱基组成;基于22种茧蜂科昆虫的COX1蛋白编码基因序列,应用最大似然法(ML)和邻接法(NJ)构建系统发育树,分析绿眼赛茧蜂与茧蜂科其他昆虫的系统发育关系。【结果】绿眼赛茧蜂线粒体基因组全长16 661 bp(GenBank登录号: MG822749),包含13个蛋白质编码基因、22个tRNA基因和2个rRNA基因,共37个基因,以及1个控制区。线粒体基因组有明显的核苷酸组成的偏倚,AT偏正,GC偏负,其A+T含量为82.83%。基因排列顺序与推测的昆虫祖先的序列不完全一致,tRNA基因7处发生重排。13个蛋白质编码基因均以ATN为起始密码子,以TAA为终止密码子。在22个tRNA基因二级结构中,除tRNAHis(H)缺失TΨC环和tRNACys(C)仅剩二氢尿嘧啶(DHU)臂和反密码子臂外,其余tRNA基因均能形成典型的三叶草结构。基于COX1蛋白编码序列的系统发育分析结果显示,与绿眼赛茧蜂亲缘关系最近的是同属于赛茧蜂属的雪跗赛茧蜂Z. niveitarsis。【结论】本研究首次获得绿眼赛茧蜂线粒体基因组全序列。结果表明绿眼赛茧蜂隶属于优茧蜂亚科(Euphorinae)赛茧蜂属,并支持赛茧蜂属的单系性。 相似文献
19.
X. Guan P. Silva K. B. Gyenai J. Xu T. Geng Z. Tu D. C. Samuels E. J. Smith 《Animal genetics》2009,40(2):134-141
The mitochondrial genome (mtGenome) has been little studied in the turkey ( Meleagris gallopavo ), a species for which there is no publicly available mtGenome sequence. Here, we used PCR-based methods with 19 pairs of primers designed from the chicken and other species to develop a complete turkey mtGenome sequence. The entire sequence (16 717 bp) of the turkey mtGenome was obtained, and it exhibited 85% similarity to the chicken mtGenome sequence. Thirteen genes and 24 RNAs (22 tRNAs and 2 rRNAs) were annotated. An mtGenome-based phylogenetic analysis indicated that the turkey is most closely related to the chicken, Gallus gallus , and quail, Corturnix japonica . Given the importance of the mtGenome, the present work adds to the growing genomic resources needed to define the genetic mechanisms that underlie some economically significant traits in the turkey. 相似文献
20.
H. Sun Y. Jin D. Zhang S. Yang Q. Li D. Song K. Zhou 《Journal of Zoological Systematics and Evolutionary Research》2009,47(4):322-327
The taxonomy of the Helice s. l. crabs has been recently revised, subdividing the Asian species in three genera, Helice , Helicana and Pseudohelice . The last one is widespread throughout the Indo-West Pacific Ocean and a single species, Pseudohelice subquadrata , is found in Asia. The other two genera appear to be endemic to Asia. However, phylogenetic affinities among the Asian representatives of Helice s. l. are poorly understood, and different morphology-based hypotheses of relationships remain untested. In this study, we used sequence data from a mitochondrial gene-block spanning three different genes [16S rDNA- trnL 1 - IGS -nad1 ] to perform phylogenetic analyses. The results provide independent molecular evidence supporting the splitting of the Asian species into Helice and Helicana . Helice is suggested to be paraphyletic with respect to P. subquadrata . In addition, the heterogeneity of the genus Pseudohelice is shown when including the East Asian and East African counterparts. We propose that the two genera, Helice and Pseudohelice , are not monophyletic in their current composition. 相似文献