首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Questions

Rapid climate change in northern latitudes is expected to influence plant functional traits of the whole community (community-level traits) through species compositional changes and/or trait plasticity, limiting our ability to anticipate climate warming impacts on northern plant communities. We explored differences in plant community composition and community-level traits within and among four boreal peatland sites and determined whether intra- or interspecific variation drives community-level traits.

Location

Boreal biome of western North America.

Methods

We collected plant community composition and functional trait data along dominant topoedaphic and/or hydrologic gradients at four peatland sites spanning the latitudinal extent of the boreal biome of western North America. We characterized variability in community composition and community-level traits of understorey vascular and moss species both within (local-scale) and among sites (regional-scale).

Results

Against expectations, community-level traits of vascular plant and moss species were generally consistent among sites. Furthermore, interspecific variation was more important in explaining community-level trait variation than intraspecific variation. Within-site variation in both community-level traits and community composition was greater than among-site variation, suggesting that local environmental gradients (canopy density, organic layer thickness, etc.) may be more influential in determining plant community processes than regional-scale gradients.

Conclusions

Given the importance of interspecific variation to within-site shifts in community-level traits and greater variation of community composition within than among sites, we conclude that climate-induced shifts in understorey community composition may not have a strong influence on community-level traits in boreal peatlands unless local-scale environmental gradients are substantially altered.  相似文献   

2.

Background and Aims

The collection of field data on plant traits is time consuming and this makes it difficult to examine changing patterns of traits along large-scale climate gradients. The present study tests whether trait information derived from regional floras can be used in conjunction with pre-existing quadrat data on species presence to derive meaningful relationships between specific morphometric traits and climate.

Methods

Quadrat records were obtained for 867 species in 404 sites from northern China (38–49°N, 82–132°E) together with information on the presence/absence of key traits from floras. Bioclimate parameters for each site were calculated using the BIOME3 model. Principal component analysis and correlation analysis were conducted to determine the most important climate factors. The Akaike Information Criterion was used to select the best relationship between each trait and climate. Canonical correspondence analysis was used to explore the relationships between climate and trait occurrence.

Key Results

The changing abundance of life form, leaf type, phenology, photosynthetic pathway, leaf size and several other morphometric traits are determined by gradients in plant-available moisture (as measured by the ratio of actual to potential evapotranspiration: α), growing-season temperature (as measured by growing degree-days on a 0 ° base: GDD0) or a combination of these. Different plant functional types (PFTs, as defined by life form, leaf type and phenology) reach maximum abundance in distinct areas of this climate space: for example, evergreen trees occur in the coldest, wettest environments (GDD0 < 2500 °Cd, α > 0·38), and deciduous scale-leaved trees occur in drier, warmer environments than deciduous broad-leaved trees. Most leaf-level traits show similar relationships with climate independently of PFT: for example, leaf size in all PFTs increases as the environment becomes wetter and cooler. However, some traits (e.g. petiole length) display different relationships with climate in different PFTs.

Conclusions

Based on presence/absence species data and flora-based trait assignments, the present study demonstrates ecologically plausible trends in the occurrence of key plant traits along climate gradients in northern China. Life form, leaf type, phenology, photosynthetic pathway, leaf size and other key traits reflect climate. The success of these analyses opens the possibility of using quadrat- and flora-based trait analyses to examine climate–trait relationships in other regions of the world.  相似文献   

3.
Root-based functional traits are relatively overlooked as drivers of savanna plant community dynamics, an important gap in water-limited ecosystems. Recent work has shed light on patterns of trait coordination in roots, but less is known about the relationship between root functional traits, water acquisition, and plant demographic rates. Here, we investigated how fine-root vascular and morphological traits are related in two dominant PFTs (C3 trees and C4 grasses from the savanna biome), whether root traits can predict plant relative growth rate (RGR), and whether root trait multivariate relationships differ in trees and grasses. We used root data from 21 tree and 18 grass species grown under greenhouse conditions, and quantified a suite of vascular and morphological root traits. We used a principal components analysis (PCA) to identify common axes of trait variation, compared trait correlation matrices between the two PFTs, and investigated the relationship between PCA axes and individual traits and RGR. We found that there was no clear single axis integrating vascular and morphological traits, but found that vascular anatomy predicted RGR in both trees and grasses. Trait correlation matrices differed in trees and grasses, suggesting potentially divergent patterns of trait coordination between the two functional types. Our results suggested that, despite differences in trait relationships between trees and grasses, root conductivity may constrain maximum growth rate in both PFTs, highlighting the critical role that water relations play in savanna vegetation dynamics and suggesting that root water transport capacity is an important predictor of plant performance in the savanna biome.  相似文献   

4.

Background and Aims

Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous.

Methods

To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations.

Key Results

Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples.

Conclusions

The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.  相似文献   

5.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

6.
The Hottentot Buttonquail Turnix hottentotus is an endangered terrestrial turnicid and is endemic to the Fynbos biome, South Africa. Due to its secretive nature and apparent rarity almost nothing is known about the species, but its range has been subject to anthropogenic modification, invasion by alien plant species and is vulnerable to climate change. To model covariates associated with the presence of Hottentot Buttonquail we undertook flush surveys across the Fynbos biome, covering 275 km. Habitat variables at encounter sites were recorded in vegetation plots, as well as locations without encounters. There was a critical number of observers needed during a flush survey in order to account for buttonquail presence, with no encounters with less than five participants. After accounting for this, we found probability of encounters decreased with increasing time-since-fire. Probability of encounters were also negatively associated with increasing percentage grass and other vegetation cover. We also found no association between percentage cover of Restionaceae plants and encounter probability, considered previously to be the best indicator of Hottentot Buttonquail presence. This information will be of use to those interested in managing habitat for this species and should inform future conservation efforts.  相似文献   

7.

Background and Aims

Despite general agreement regarding the adaptive importance of plasticity, evidence for the role of environmental resource availability in plants is scarce. In arid and semi-arid environments, the persistence and dominance of perennial species depends on their capacity to tolerate drought: tolerance could be given on one extreme by fixed traits and, on the other, by plastic traits. To understand drought tolerance of species it is necessary to know the plasticity of their water economy-related traits, i.e. the position in the fixed–plastic continuum.

Methods

Three conspicuous co-existing perennial grasses from a Patagonian steppe were grown under controlled conditions with four levels of steady-state water availability. Evaluated traits were divided into two groups. The first was associated with potential plant performance and correlated with fitness, and included above-ground biomass, total biomass, tillering and tiller density at harvest. The second group consisted of traits associated with mechanisms of plant adjustment to environmental changes and included root biomass, shoot/root ratio, tiller biomass, length of total elongated leaf, length of yellow tissue divided by time and final length divided by the time taken to reach final length.

Key Results and Conclusions

The most plastic species along this drought gradient was the most sensitive to drought, whereas the least plastic and slowest growing was the most tolerant. This negative relationship between tolerance and plasticity was true for fitness-related traits but was trait-dependent for underlying traits. Remarkably, the most tolerant species had the highest positive plasticity (i.e. opposite to the default response to stress) in an underlying trait, directly explaining its drought resistance: it increased absolute root biomass. The niche differentiation axis that allows the coexistence of species in this group of perennial dryland grasses, all limited by soil surface moisture, would be a functional one of fixed versus plastic responses.  相似文献   

8.

Key message

Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance.

Abstract

Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.
  相似文献   

9.
Predicting patterns of plant species richness in megadiverse South Africa   总被引:4,自引:0,他引:4  
Using new tools (boosted regression trees) in predictive biogeography, with extensive spatial 23 distribution data for >19 000 species, we developed predictive models for South African plant species richness patterns. Further, biome level analysis explored possible functional determinants of country‐wide regional species richness. Finally, to test model reliability independently, we predicted potential alien invasive plant species richness with an independent dataset. Amongst the different hypotheses generally invoked to explain species 30 diversity (energy, favorableness, topographic heterogeneity, irregularity and seasonality), results revealed topographic heterogeneity as the most powerful single explanatory variable for indigenous South African plant species richness. Some biome‐specific responses were observed, i.e. two of the five analyzed biomes (Fynbos and Grassland) had richness best explained by the “species‐favorableness” hypothesis, but even in this case, topographic heterogeneity was also a primary predictor. This analysis, the largest conducted on an almost exhaustive species sample in a species‐rich region, demonstrates the preeminence of topographic heterogeneity in shaping the spatial pattern of regional plant species richness. Model reliability was confirmed by the considerable predictive power for alien invasive species richness. It thus appears that topographic heterogeneity controls species richness in two main ways: firstly, by providing an abundance of ecological niches in contemporary space (revealed by alien invasive species richness relationships) and secondly, by facilitating the persistence of ecological niches through time. The extraordinary richness of the South African Fynbos biome, a world‐renowned hotspot of biodiversity with the steepest environmental gradients in South Africa, may thus have arisen through both mechanisms. Comparisons with similar regions of the world outside South Africa are needed to confirm the generality of topographic heterogeneity and favorableness as predictors of plant richness.  相似文献   

10.

Aims

Inter-specific comparisons of plant traits may vary depending on intra-specific variation. Here we examine the impact of root branching order and season on key functional root traits for grass species. We also compare root traits among co-existing grass species as a step towards defining root trait syndromes.

Methods

Monocultures of 13 grass species, grown under field conditions and subjected to intensive management, were used to record root trait values for coarse roots (1st order, >0.3?mm), fine roots (2nd and 3rd orders, <0.2?mm) and mixed root samples over three growing seasons.

Results

Branching order and species had a significant effect on root trait values, whereas season showed a marginal effect. The diameter of coarse roots was more variable than that of fine roots and, as expected, coarse roots had higher tissue density and lower specific root length values than fine roots. Principal component analysis run on eight root traits provided evidence for two trait syndromes related to resource acquisition and conservation strategies across grass species.

Conclusions

Our data show that root branching order is the main determinant of root trait variation among species. This highlights the necessity to include the proportion of fine vs coarse roots when measuring traits of mixed root samples.  相似文献   

11.
Two new species of Ficinia (Cypereae, Cyperaceae) are described from South Africa. Ficinia has its centre of diversity in the Greater Cape Floristic Region (GCFR), with c. 90% of the species growing in the Fynbos biome. Recent collections from the arid edge of the Fynbos biome and in the Succulent Karoo biome have revealed two species new to science. Both are perennial plants that lack leaf blades and have sticky leaf sheaths.  相似文献   

12.
叶片和根系是植物获取资源的最重要的器官,其性状随环境梯度的变化反映了植物光合碳获取和水分与养分的吸收能力及其对环境变化适应的生态对策。羌塘高原降水梯度带高寒草地群落叶片和根系成对性状关系研究不仅能揭示环境梯度对植物性状的塑造作用,也可为理解寒、旱和贫瘠等极端环境下植物的适应策略提供依据。为此,选择3组具有代表性的叶片和根系成对性状:比叶面积(SLA)和比根长(SRL);单位质量叶氮含量(LN_(mass))和单位质量根氮含量(RN_(mass));单位面积叶氮含量(LN_(area))和单位长度根氮含量(RN_(length)),分析不同优势植物地上、地下成对性状变异特征及其与环境因子的关系,探讨植物性状对高寒生态系统水分和养分限制因素的适应策略。研究表明,区域气候和土壤环境导致的叶片性状变异大于根系性状的变异,干旱端的植物既具有高的SRL,又具有高的叶片和根系的养分含量(LN_(mass),LN_(area)和RN_(mass))。SLA-SRL、LN_(mass)-RN_(mass)、LN_(area)-RN_(length)均表现为权衡关系,在干旱端(年降雨量MAP 400 mm)的高寒草原、荒漠草原和极湿润端(MAP 600 mm)的高寒草甸这种权衡关系更为明显,而中间区域(400 MAP 600 mm)的高寒草甸养分和水分限制不是很强烈,叶片和根系性状更多地表现出协同关系。从植物功能类群来看,苔草和禾草类植物叶片和根系成对性状之间具有更强烈的权衡关系。干旱端植物通过增加SRL和叶片、根系养分含量来提高水分和养分的吸收能力,同时通过叶片高的氮含量提高光合碳获取能力,保障了根系生长的物质来源,表现出地上和地下同时投入的策略。干旱端植物保持较高的养分含量是抵御和适应严酷的寒、旱和贫瘠的环境胁迫的重要策略。而在湿润端植物则采取增加SLA,维持地上光合生产力的生态策略。  相似文献   

13.

Background

Plant functional traits co-vary along strategy spectra, thereby defining trade-offs for resource acquisition and utilization amongst other processes. A main objective of plant ecology is to quantify the correlations among traits and ask why some of them are sufficiently closely coordinated to form a single axis of functional specialization. However, due to trait co-variations in nature, it is difficult to propose a mechanistic and causal explanation for the origin of trade-offs among traits observed at both intra- and inter-specific level.

Methodology/Principal Findings

Using the Gemini individual-centered model which coordinates physiological and morphological processes, we investigated with 12 grass species the consequences of deliberately decoupling variation of leaf traits (specific leaf area, leaf lifespan) and plant stature (height and tiller number) on plant growth and phenotypic variability. For all species under both high and low N supplies, simulated trait values maximizing plant growth in monocultures matched observed trait values. Moreover, at the intraspecific level, plastic trait responses to N addition predicted by the model were in close agreement with observed trait responses. In a 4D trait space, our modeling approach highlighted that the unique trait combination maximizing plant growth under a given environmental condition was determined by a coordination of leaf, root and whole plant processes that tended to co-limit the acquisition and use of carbon and of nitrogen.

Conclusion/Significance

Our study provides a mechanistic explanation for the origin of trade-offs between plant functional traits and further predicts plasticity in plant traits in response to environmental changes. In a multidimensional trait space, regions occupied by current plant species can therefore be viewed as adaptive corridors where trait combinations minimize allometric and physiological constraints from the organ to the whole plant levels. The regions outside this corridor are empty because of inferior plant performance.  相似文献   

14.

Background and aims

Plant traits may characterize functional ecosystem properties and help to predict community responses to environmental change. Since most traits used relate to aboveground plant organs we aim to explore the indicative value of root traits.

Methods

We examined the response of root traits (specific root length [SRL], specific root surface area [SRA], root diameter [RD], root tissue mass density [TMD], root N concentration) in six grassland species (3 grasses, 3 herbs) to four management regimes (low vs. high mowing frequency; no fertilization vs. high NPK fertilization). The replicated experiment in temperate grassland with long continuity simulated the increase in grassland management intensity in the past 50 years in Central Europe.

Results

Increasing mowing frequency (one vs. three cuts per year) led to no significant root trait changes. NPK fertilization resulted in considerable trait shifts with all species responding in the same direction (higher SRL, SRA and N concentration, lower TMD) but at different magnitude. Fertilization-driven increases in SRA were mainly caused by lowered tissue density while root diameter reduction was the main driver of SRL increases.

Conclusion

We conclude that root morphological traits may be used as valuable indicators of environmental change and increasing fertilization in grasslands.  相似文献   

15.
Herbaceous and woody alien plants visible from a moving vehicle were recorded along 1 km roadside transects at 5 km intervals over a distance of 5869 km in the semi-arid and arid Fynbos, Succulent Karoo, Nama Karoo and Arid Savanna (Kalahari) biomes in South Africa. Each 1 km transect was classified by biome and vegetation type, mean annual rainfall, rainfall seasonality, soil surface type and landuse adjoining the roadside. Although travelling speed affected the range and frequency of plant species observed, the method was repeatable at a speed of 100 km h?1. Alien plants occurred in 98% of 119 Fynbos, 81% of 204 Succulent Karoo, 72% of 661 Nama Karoo, 47% of 171 Arid Savanna and 100% of seventeen Grassland transects. Alien species richness per site was correlated with mean annual rainfall, but in all regions, sites adjacent to cultivation had significantly more alien species than sites adjoining rangeland. The alien plant assemblage of the arid winter-rainfall Succulent Karoo included species from mesic winter-rainfall lowland Fynbos and the arid Nama Karoo receives unseasonal rainfall. The frequencies of Prosopis spp., Atriplex spp. and Opuntia ficus-indica were not significantly greater near cultivation, and these perennial plants, all of which are dispersed by indigenous and domestic animals, can invade natural rangeland in arid and semi-arid southern Africa.  相似文献   

16.

Aims

This study aimed to determine whether white lupin adaptation to moderately calcareous soils could be enhanced by lime-tolerant plants and Bradyrhizobium strains.

Methods

Fourteen landraces from Italy, Morocco and Egypt and some cultivars were grown in moderate-lime (ML) and low-lime (LL) soil with each of two inoculants, one commercial and one including three Bradyrhizobium strains well-nodulating under ML soil (isolated from other lupin species). Grain yield and above-ground biomass were assessed in large artificial environments that mimicked field conditions. Shoot, root and nodulation traits at onset of flowering were studied in a pot experiment.

Results

ML soil severely reduced plant yield, growth and nodulation but increased the harvest index relative to LL. Top-yielding genotypes for grain yield displayed significant rank inversion across soil types (P < 0.05). Lime-tolerant genotypes reduced their nodulation in ML soil less than limesusceptible ones. Some landraces outperformed the reference lime-tolerant cultivar Giza 1 in ML soil. One Italian landrace had a lime-tolerant response across agricultural locations. The Moroccan inoculant provided greater nodulation, more shoot residues but similar grain yield in ML soil, and less grain and shoot residues in LL soil, compared with the commercial inoculant.

Conclusions

Lupin adaptation to ML soil can be improved mainly through selection of lime-tolerant plants.  相似文献   

17.

Background and aims

Machine mowing, mimicking the traditional hand mowing, is often used as a successful management tool to maintain grassland biodiversity, but few studies have investigated the long-term effects of traditional versus mechanical mowing of plant communities. Machine mowing as opposed to hand mowing causes soil compaction and reduction of soil aeration. In response, we expected strong effects on below-ground plant traits: root aerenchyma formation and superficial root growth, and no specific effects on aboveground traits. Effects were expected to be more pronounced in soils vulnerable to compaction.

Methods

We evaluated the changes in above- and belowground plant traits in a long-term (38-year) experiment with annual hand-mowing and machine-mowing management regimes on two different soil types: a coarse structured sandy soil and a finer structured sandy-organic soil

Results

Only on the organic soil, long-term machine mowing leads to lower soil aeration (more compacted soil) and a marked change in the belowground trait distribution of the plant community. Here we find a higher cover of superficially rooting species and marginally significant lower cover of species without morphological adaptations to soil hypoxia, but no effect on species with a high capacity of forming aerenchyma.

Conclusion

Mowing with heavy machines on soils vulnerable to compaction affect the vegetation according to changes in soil physical conditions. This is reflected in a shift towards communities with greater proportion of superficially rooting species. Our results illustrate the sensitivity of grasslands to slight changes in the management regime.  相似文献   

18.

Background and aims

Modern maize breeding has increased maize yields worldwide. The changes in above-ground traits accompanying yield improvement are well-known, but less information is available as to the effect of modern plant breeding on changes in maize root traits.

Methods

Root growth, nitrogen uptake, dry matter accumulation and yield formation of six maize hybrids released from 1973 to 2000 in China were compared. Experiments were conducted under low and high nitrogen supply in a black soil in Northeast China in 2010 and 2011.

Results

While nitrogen accumulation, dry matter production and yield formation have been increased, modern maize breeding in China since 1990 has reduced root length density in the topsoil without much effect on root growth in the deeper soil. The efficiency of roots in acquiring N has increased so as to match the requirement of N accumulation for plant growth and yield formation. The responses of root growth, nitrogen and dry matter accumulation, and grain yield to low-N stress were similar in the more modern hybrids as in the older ones.

Conclusions

Modern maize breeding has constitutively changed root and shoot growth and plant productivity without producing any specific enhancement in root responsiveness to soil N availability.  相似文献   

19.

Aim

The global vertical depth distribution of seagrass species remains poorly understood. Locally, the abundance and distribution of seagrasses is determined by light penetration, but at global levels each seagrass species has very distinct maximum distributional depth ranges, indicating that plant-associated traits must also influence their specific depth ranges. Seagrass-specific attributes, such as plant size or architecture, growth or reproductive strategy and their physiological and/or morphological acclimatization potential, have been suggested to be responsible for this variety of vertical distributions. We investigate here whether these species-specific traits drive differences in the global maximum vertical distribution of seagrasses.

Location

Global.

Time period

Publications between 1982 and 2020.

Major taxa studied

Seagrasses (order Alismatales).

Methods

We tested whether the species-specific maximum vertical distribution of seagrasses can be predicted by (1) their rhizome diameter (a proxy for plant size); (2) their functional resilience (growth/reproductive strategy); or (3) their acclimatization capacity. For the last aspect, we used a systematic review followed by meta-analytical approaches to select key seagrass traits that could potentially acclimatize to extreme light ranges across different seagrasses.

Results

We found that vertical distribution is best explained by the species-specific acclimatization capacity of various seagrass traits, including saturation irradiance (physiological trait), leaves per shoot (morphological trait) and above-ground biomass (structural trait). In contrast, our results indicate no predictive power of seagrass size or growth/reproductive strategy on the vertical distribution of seagrasses.

Main conclusions

Across the globe, the ability of seagrass species to thrive at a wide range of depths is strongly linked to the species-specific acclimatization capacity of key traits at different organizational levels.  相似文献   

20.
Question: How can vegetation gradients be described in riparian zones located in a species‐rich mountain range and how do these gradients explain the variation found in the vegetation? Location: Hottentots Holland Mountains, Western Cape, South Africa. Methods: Three gradients (geographic, longitudinal, lateral) were defined to describe the complex vegetation patterns found here. The gradients are related as follows: (1) the geographic gradient: related to the climatic and topographical changes across the entire mountain range; (2) the longitudinal gradient related to the changes along the different river reaches; (3) the lateral gradient related to the processes along the profile of the riverbed. These three gradients operated on three different hierarchical levels. Partial Canonical Correspondence Analysis (pCCA) was used to determine the amount of variation that is explained on each of the hierarchical levels. Results: The geographical gradient explained the highest fraction (more than 50%) of the total variation explained. This can be ascribed to the high species turnover across landscapes in the Fynbos Biome; this is most likely an outcome that is specific for this region. The second most important gradient was the lateral gradient, which reflects stream power and inundation frequencies of the river. This gradient is represented by ca. 48% of the explained variation and this gradient explains the major disturbances occurring in a riverine ecosystem. The longitudinal gradient was the least important of the gradients and shows overlap with the geographical gradient. Conclusions: In the species‐rich environment of the Fynbos Biome geographical factors do not only account for variation in zonal vegetation but also for variation within azonal vegetation, like riparian corridors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号