首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of lymphocytes has been used to study the regulation of mammalian gene expression. Concanavalin A (Con A) added to mouse spleen lymphocytes in serum-free medium leads to an increase in the rate of DNA synthesis as great as 1000 fold, commencing 20 hr after its addition. Prior to 20 hr, the rate of purine synthesis increases 10–100 fold as measured by accumulation of the purine intermediate, formyl glycineamide ribonucleotide (FGAR). Addition of dibutyryl cyclic GMP to the lymphocyte suspensions results in a 10 fold increase in the rate of DNA synthesis in the absence of Con A and enhances both purine synthesis and DNA synthesis in its presence. The activity of phosphoribosyl pyrophosphate synthetase (PRPP synthetase), an enzyme central to purine and pyrimidine biosynthesis, is increased 2–10 fold during the activation. The increase begins to appear 8 hr after Con A addition and requires concomitant protein synthesis. The induced PRPP synthetase activity is stimulated by the presence of cyclic GMP in the enzyme assay. Addition of dibutyryl cyclic AMP to Con A-stimulated lymphocytes inhibits FGAR production, the stimulation of DNA synthesis, and the appearance of cyclic GMP-sensitive PRPP synthetase. These studies suggest that cyclic nucleotides play a significant role in the molecular mechanism of lymphocyte activation, the regulation of purine biosynthesis, and of eucaryotic genetic expression.  相似文献   

2.
A particulate preparation of cyclic AMP phosphodiesterase from rat thymic lymphocytes exhibited two apparent Km's at 0.9×10−6M and 8.0×10−6M. The enzyme with the higher Km was stimulated by cyclic GMP by a mechanism involving an increase in the Vmax of the enzyme with no change in the Km. Cyclic GMP competitively inhibited the enzyme with the low apparent Km which had a Ki for cyclic GMP of 4×10−5M. The modulation of cyclic AMP phosphodiesterase activity by cyclic GMP in the control of cyclic AMP-mediated lymphocyte proliferation is discussed.  相似文献   

3.
The effects of imidazole on the hydrolysis of cyclic AMP and cyclic GMP by crude and partially purified phosphodiesterases obtained from bovine heart and rat liver were studied in order to determine if imidazole has an activity on cyclic nucleotide hydrolysis under conditions which might explain its ability to antagonize the effects of several hormones. Imidazole-Cl (40 mm, pH 7.4) had no effect on the hydrolysis of cyclic AMP or cyclic GMP at substrate levels below 10 μm by the crude enzymes but increasing stimulation was observed with increasing substrate concentrations reaching a twofold stimulation at 1 mm cyclic nucleotide. Three phosphodiesterases with varying substrate specificities were partially purified from bovine heart by ammonium sulfate precipitation and diethyl aminoethyl cellulose chromatography. With these enzymes imidazole had less stimulatory activity and some inhibitory effect on the hydrolysis of 10?4m cyclic AMP and cyclic GMP but was without significant effect on the hydrolysis of 10?6m cyclic AMP or cyclic GMP. The stimulatory activity of imidazole on the hydrolysis of high levels of cyclic nucleotide was dependent on the presence of phosphodiesterase activator. The stimulatory effect of the activator and imidazole plus activator on the hydrolysis of 10?4m cyclic GMP by the rather cyclic GMP-specific enzyme could be eliminated by the addition of ethylene glycol-bis-(β-aminoethyl ether)N,N′-tetraacetate (EGTA) and restored by Ca2+. Imidazole was without effect on the binding of cyclic AMP to a cyclic AMP-dependent protein kinase from bovine heart. The lack of effect of imidazole on the hydrolysis of physiological levels of cyclic AMP or cyclic GMP suggests that the activity of imidazole to antagonize the effects of various hormones is probably not due to a direct action of imidazole on the hydrolysis of cyclic AMP or cyclic GMP.  相似文献   

4.
Calmodulin purified from bovine brain markedly stimulated cyclic GMP-dependent protein kinase from pig lung in the presence of cyclic GMP. This stimulation by calmodulin did not require Ca2+ and was dose-dependent up to optimal amounts, but the extent of stimulation decreased at concentrations over the optimal condition. The concentrations of cyclic GMP and cyclic AMP producing half-maximal stimulation were 4.5 × 10?8 M and 5.0 × 10?6 M respectively, under optimal conditions. Calmodulin increased maximum velocity without altering the Km for ATP. These effects of calmodulin on cyclic GMP-dependent protein kinase were similar to those of the stimulatory modulator described by Kuo and Kuo (J. Biol. Chem. 251, 4283–4286, 1976). Ouf findings indicate that calmodulin regulates enzyme activity both Ca2+-dependently and independently.  相似文献   

5.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site.The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP.Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 44 · 10?8 M belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2–5 · 10?6 M) was demonstrated by the inhibitory effect of 10?5 M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

6.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10−4 M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by α-adrenergic blockade with phenoxybenzamine. Epinephrine (4 · 10−5 M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the β-blocking agent, propranolol. Pure α-adrenergic stimulation with methoxamine (4 · 10−4 M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 · 10−6 M, isoproterenol (a β-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 · 10−5 M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cylcic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 · 10−6 M).These data strongly suggest that cholinergic muscarinic agonists and α-adrenergic agonist stimulate amylase output in rabbit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by α-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this issue to the effects of cholinergic stimuli.  相似文献   

7.
Nonsuppressible insulin-like protein (NSILP), 100 ng/ml, inhibited cyclic AMP accumulation in rat liver, as stimulated by glucagon, 10?7M, from 493 ± 12 to 183 ± 7 pmoles/gm tissue (p<0.001), but did not alter basal levels of cyclic AMP, 143 ± 2 pmoles/gm tissue. NSILP, 100 ng/ml, also inhibited cyclic AMP accumulation, stimulated by epinephrine, 5 × 10?4M, from 387 ± 12 to 233 ± 9 pmoles/gm tissue. With 1 μM as substrate, NSILP, 100 ng/ml, increased cAMP-dependent phosphodiesterase activity in liver slices from 19.08 ± 0.18 to 24.94 ± 0.38 pmoles cAMP hydrolyzed/mg protein/min (p<0.001), but did not alter this enzyme activity in broken cell preparations of rat liver. Cyclic GMP levels in liver slices, 22.5 ± 0.3 pmoles/gm tissue, were increased by NSILP to 36.3 ± 0.5 pmoles/gm tissue (p<0.01). NSILP had no effect on adenylate cyclase activity. These changes, caused by NSILP in cyclic nucleotide metabolism in liver, resemble those described for insulin, and suggest that alterations in cyclic nucleotide levels in liver may be relevant to other hepatic effects of NSILP.  相似文献   

8.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

9.
High-affinity cyclic AMP phosphodiesterase purified to homogeneity from dog kidney was studied with respect to its stability, its catalytic and kinetic properties, and its sensitivity to pharmacological agents. The enzyme was shown to rapidly lose activity upon dilution to low protein concentrations in aqueous media, but this activity loss was largely prevented by the presence of bovine serum albumin or ethylene glycol. Similarly, maximum activity required bovine serum albumin to be present during incubation for activity analysis. Enzyme activity required a divalent cation; Mg2+, Mn2+, and Co2+ each supported activity, but highest activity was obtained with Mg2. The temperature optimum ranged from 30 to 45 °C and depended on substrate concentration; the Ea = 10,600 cal/mol. The pH optimum of the enzyme was broad, with a maximum from pH 8.0 to 9.5. The enzyme exhibits linear Michaelis-Menton kinetics for hydrolysis of cyclic AMP at all substrate concentrations tested and for hydrolysis of cyclic GMP at > 20 μm. The Km for cyclic AMP hydrolysis was 2 μm, and that for cyclic GMP hydrolysis was 312 μm. The Ki values for the competitive inhibition of hydrolysis of each substrate by the other were similar to their Km values suggesting a single active site. Cyclic AMP hydrolysis was weakly inhibited by cyclic GMP, cyclic IMP, adenine, and adenosine, but was not inhibited by the mono-, di, or trinucleotides of adenosine, guanosine, or inosine. Activity was competitively inhibited with Ki values in the micromolar range by drugs representative of methylxanthines, isoquinolines, pyrazolopyridines, imidazolidinones, triazolopyrimidines, pyridylethylenediamines, phenothiazines, and calcium antagonists. The results are discussed with reference to the similarities and differences between high- and low-affinity phosphodiesterase forms.  相似文献   

10.
Cyclic nucleotide phosphodiesterase was examined in canine and bovine superior cervical ganglia. Activity in crude supernatant fractions was only slightly stimulated by Ca++ despite the presence of protein activating factor. Three forms of phosphodiesterase were resolved from bovine ganglia supernatant extracts by chromatography on DEAE-cellulose. The first enzyme eluted, (DI), was almost completely specific for cyclic GMP, while the other two (DII and DIII), hydrolyzed both cyclic AMP and cyclic GMP; all were free of heat-stable protein activator. Each enzyme was inhibited by low concentrations of Ca++ in the assay medium. Inhibition by Ca++ was reversed by addition of protein activator, but activity did not increase above the control level. Cyclic AMP hydrolysis by enzyme DII was stimulated by micromolar concentrations of cyclic GMP. This stimulation was reduced by Ca++ unless protein activator was present.  相似文献   

11.
Our results indicate that indomethacin inhibits cyclic AMP phosphodiesterase in the myometrium of the pregnant rhesus monkey under in vitro as well as in vivo conditions. Kinetic data on extracts of myometrium from pregnant rhesus monkeys indicated two cyclic AMP phosphodiesterase activities. The apparent Km value for the high affinity enzyme averaged 3.9 μM and for the low affinity enzyme 23 μM; the Vmax values averaged 0.56 and 1.4 nmoles cyclic AMP hydrolized per mg protein min?1 respectively. When indomethacin was added to the myometrial extracts, the activity of the high Km phosphodiesterase was competitively inhibited, with an average Ki of 200 μM; the low Km enzyme was noncompetitively inhibited with an average Ki of 110 μM. Experiments on myometrial slices demonstrated that 10 μM indomethacin potentiated the effect of PGE1 and epinephrine on cyclic AMP levels, presumably by inhibiting the phosphodiesterase activity. The uterine relaxing effect of indomethacin is generally attributed to the inhibition of prostaglandin synthetase activity. However, treatment of pregnant rhesus monkeys with therapeutic doses of indomethacin resulted in a significant inhibition of myometrial cyclic AMP phosphodiesterase activity in association with uterine relaxation and prolongation of gestation.  相似文献   

12.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

13.
The cellular slime mold, Dictyostelium discoideum, contains at least two classes of phosphodiesterase activity. One class of enzymes hydrolyses cyclic AMP (cAMP) and cyclic GMP (cGMP) with approximately equal rates. Another enzyme, which is less than 5% of the total activity, specifically hydrolyses cGMP. The cGMP-specific enzyme does not bind to a Con A-Sepharose column, while all the cAMP-hydrolyzing activities are retarded by this column. The cGMP-specific enzyme is activated by low cGMP concentrations (10?8-10?6 M); the enzyme has normal Michaelis-Menten kinetics at high substrate concentrations with a Km of about 3–6 μM. The cGMP-binding sites for activation and for catalysis show different cyclic nucleotide specificity, but they are probably located on one protein with a molecular weight of about 70 000. The enzyme is stable only under specific conditions, and the activation property of the enzyme is lost relatively easy. Irreversible modifications occur at temperatures below 0° and above 30°C, and at pH below 6.0. Several other conditions such as high ion concentrations, temperatures just above 0°C and pH above 8.0 lead to reversibel modifications of enzyme activity.  相似文献   

14.
The hormonal control of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity has been studied by using as a model the isoproterenol stimulation of cyclic AMP phosphodiesterase activity in C6 glioma cells. A 2-fold increase in cyclic AMP phosphodiesterase specific activity was observed in homogenates of isoproterenol-treated cells relative to control. This increase reached a maximum 3 h after addition of isoproterenol, was selective for cyclic AMP hydrolysis, was reproduced by incubation with 8-Br cyclic AMP but not with 8-Br cyclic GMP and was limited to the soluble enzyme activity. The presence of 0.1 mM EGTA did not alter the magnitude of the increase in phosphodiesterase activity. Moreover, the calmodulin content in the cell extracts was not changed after isoproterernol. DEASE-Sephacel chromatography of the 100 000×g supernatant resolved two peaks of phosphodiesterase activity. The first peak hydrolyzed both cyclic nucleotides and was activated by Ca2+ and purified calmodulin. The second peak was specific for cyclic AMP but it was Ca2+- and calmodulin-insensitive. Isoproterenol selectively increased the specific activity of the second peak. Kinetic analysis of the cyclic AMP hydrolysis by the induced enzyme reveled a non-linear Hofstee plot with apparent Km values of 2–5 μM. Cyclic GMP was not hydrolyzed by this enzyme in the absence or presence of calmodulin and failed to affect the kinetics of the hydrolysis of cyclic AMP. Gel filtration chromatography of the induced DEASE-Sephacel peak resolved a single peak of enzyme activity with an apparent molecular weight of 54 000.  相似文献   

15.
Cyclic nucleotide phosphodiesterase activity (3', 5'-cyclic-nucleotide 5'-nucleotidohydrolase, 3.1.2.17) was studied in homogenates of WI-38 human lung fibroblasts using 0.1--200 microgram cyclic nucleotides. Activities were observed with low Km for cyclic AMP(2--5 micron) and low Km for cyclic GMP (1--2 micron) as well as with high Km values for cyclic AMP (100--125 micron) and cyclic GMP (75--100 micron). An increased low Km cyclic AMP phosphodiesterase activity was found upon exposure of intact fibroblasts to 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase activity in broken cell preparations, as well as to other agents which elevate cyclic AMP levels in these cells. The enhanced activity following exposure to 3-isobutyl-1-methylxanthine was selective for the low Km cyclic AMP phosphodiesterase since there was no change in activity of low Km cyclic GMP phosphodiesterase activity or in high Km phosphodiesterase activity with either nucleotide as substrate. The enhanced activity due to 3-isobutyl-1-methylxanthine appeared to involve de novo synthesis of a protein with short half-life (30 min), based on experiments involving cycloheximide and actinomycin D. This activity was also enhanced with increased cell density and by decreasing serum concentration. Studies of some biochemical properties and subcellular distribution of the enzyme indicated that the induced enzyme was similar to the non-induced (basal) low Km cyclic AMP phosphodiesterase.  相似文献   

16.
Nuclear membranes from rat liver contain a phosphoprotein phosphatase activity capable of dephosphorylating endogenous nuclear membrane phosphoproteins. This activity was also expressed towards the 32P-labeled exogenous phosphoprotein substrates phosvitin and lysine-rich histone. Differential effects of altered ionic strength, EDTA, pyrophosphate, and 2-mercaptoethanol on the phosphatase activity towards the two exogenous substrates suggest the presence of multiple phosphatases in the nuclear membrane. ATP, ADP, and sodium fluoride inhibited activity towards both exogenous substrates, while cyclic AMP or cyclic GMP at 10?6M had no apparent effect.  相似文献   

17.
A high-affinity calmodulin-independent cyclic AMP phosphodiesterase was purified to homogeneity from human lung tissue. This enzyme has a molecular weight of 60,000, a sedimentation coefficient of 3.2–3.4 S, and an isoelectric pH of 4.6–4.8. Neither Ca2+ nor calmodulin (in the presence or absence of added Ca2+) stimulates the enzymatic activity. This enzyme appears to be very similar to that described previously from dog kidney (W. J. Thompson, P. M. Epstein, and S. J. Strada, (1979) Biochemistry18, 5228–5237). Hydrolysis of cyclic AMP is greatly enhanced by Mg2+ (25–30× at 10 mm Mg2+) and Mn2+ (20× at 10 mm Mn2+). Zn2+, Cu2+, and Co2+ are ineffective at these concentrations. Cyclic AMP is the exclusive substrate with a Km of 0.7–0.8 μm. The I50 of cyclic GMP is 1 mm using 1 μm cyclic AMP as substrate. In contrast, aminophylline, MIX, and SQ 20009 have I50s of 0.28, 0.021, and 0.001 mm, respectively). The purified enzyme is susceptible to temperature inactivation and protease degradation. Significant (10%) inhibition is seen at 37 °C for 20 min. Trypsin, at 0.1 μg/ml, destroys 50% of the activity in 30 min at 25 °C. Our observations concerning its lability to temperature and proteases coupled with its lack of response to calmodulin suggest this enzyme is a basic catalytic subunit of other cyclic AMP phosphodiesterases present within human lung tissue.  相似文献   

18.
Particulate cyclic nucleotide phosphodiesterases of rat kidney display some distinct kinetic and regulatory properties. Only a small portion (5–10%) of the total homogenate low Km cyclic AMP phosphodiesterase activity (measured with concentrations of cyclic AMP less than l μm) is tightly associated with kidney membranes. Cyclic GMP phosphodiesterase activity (measured with 0.25–200 μm cyclic GMP) is readily detectable in these fractionated and washed membranes. Low concentrations of cyclic GMP stimulated the hydrolysis of cyclic AMP (Ka ~- 0.5 μM), an effect not noted in most other membrane systems. High concentrations of cyclic GMP (Ki ~- 450 μM) and cyclic AMP (Ki ~- 150 μM) inhibited the hydrolysis of each other noncompetitively. Solubilization of membrane bound activities by sonication or Sarkosyl L markedly alters enzyme kinetic properties and the responses to cyclic nucleotides and sulfhydryl reagents. Incubation of membrane fractions with dithiothreitol (5 mm) or storage of the membranes at 4 °C results in a change in extrapolated kinetic constants for cyclic AMP hydrolysis and an increase in the rate of denaturation at 45 °C. Our findings raise the possibility that regulation of membrane-bound cyclic nucleotide phosphodiesterase activity involves interactions with cyclic nucleotides themselves, as well as oxidation and reduction of disulfide bonds and membrane-enzyme interactions.  相似文献   

19.
Cyclic GMP inhibits the slow inward Ca current of cardiac cells. This effect could be due to a cyclic GMP-mediated phosphorylation of the Ca channel (or some protein modifying Ca channel activity), or alternatively, to enhanced degradation of cyclic AMP owing to stimulation of a phosphodiesterase by cyclic GMP. To test the latter possibility, we examined the effect of extracellular 8-bromo-cyclic GMP on cyclic AMP levels in guinea pig papillary muscles, in parallel with electrophysiological experiments. Isoproterenol (10(-6) M) significantly increased the cyclic AMP levels and induced Ca-dependent slow action potentials. Superfusion with 8-bromo-cyclic GMP (10(-3) M) inhibited the slow action potentials induced by isoproterenol. However, muscles superfused with 8-bromo-cyclic GMP had cyclic AMP levels identical to those of muscles superfused with isoproterenol alone. Similarly, 8-bromo-cyclic GMP had no effect on the increase in cyclic AMP levels of muscles treated with forskolin (10(-6) M) or histamine (10(-6) M). We conclude that the inhibitory effect of cyclic GMP on slow Ca channels in guinea pig ventricular cells is not due to a decrease in the cyclic AMP levels. We hypothesize that a cyclic GMP-mediated phosphorylation is the most likely explanation for the Ca channel inhibition observed in this preparation.  相似文献   

20.
Cyclic AMP and citric acid accumulation by Aspergillus niger   总被引:3,自引:0,他引:3  
Aspergillus niger accumulated citric acid in the medium under certain conditions. Cyclic AMP concentrations of the order of 10?6M and higher caused an increase in the rate of citrate synthesis. Adenosine, ATP, and cyclic GMP at 10?3M also stimulated, but were ineffective at 10?4M. 5′-AMP had no effect while 5′-GMP and guanosine inhibited slightly. ADP showed a 42% inhibition. Theophylline enhanced the cyclic AMP effect. It is proposed that citric acid accumulation by Aspergillus niger may result from abnormal cyclic AMP metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号