首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of glutamate dehydrogenase on L-glutamine was followed by determining the formation of α-ketoglutaramate. The rate of the reaction with L-glutamine was about 0.01% of that observed with L-glutamate. The findings suggest that α-ketoglutaramate present in tissues arises mainly by transamination rather than by oxidation of glutamine. tamine. Glutamate dehydrogenase does not catalyze glutamate formation from α-ketoglutarate and L-glutamine at a significant rate, but the present findings do not exclude the possibility that glutamine amide nitrogen is used for synthesis of α-amino groups in the mammal by pathways involving coupling between glutamate dehydrogenase and glutaminase (or Ω-amidase) or a glutamine-binding subunit, i.e., by reactions equivalent to that catalyzed by glutamate synthase.  相似文献   

2.
Cell-free (CF) expression technologies have emerged as promising methods for the production of individual membrane proteins of different types and origin. However, many membrane proteins need to be integrated in complex assemblies by interaction with soluble and membrane-integrated subunits in order to adopt stable and functionally folded structures. The production of complete molecular machines by CF expression as advancement of the production of only individual subunits would open a variety of new possibilities to study their assembly mechanisms, function, or composition. We demonstrate the successful CF formation of large molecular complexes consisting of both membrane-integrated and soluble subunits by expression of the atp operon from Caldalkalibacillus thermarum strain TA2.A1 using Escherichia coli extracts. The operon comprises nine open reading frames, and the 542-kDa F1Fo-ATP synthase complex is composed of 9 soluble and 16 membrane-embedded proteins in the stoichiometry α3β3γδ?ab2c13. Complete assembly into the functional complex was accomplished in all three typically used CF expression modes by (i) solubilizing initial precipitates, (ii) cotranslational insertion into detergent micelles or (iii) cotranslational insertion into preformed liposomes. The presence of all eight subunits, as well as specific enzyme activity and inhibition of the complex, was confirmed by biochemical analyses, freeze-fracture electron microscopy, and immunogold labeling. Further, single-particle analysis demonstrates that the structure and subunit organization of the CF and the reference in vivo expressed ATP synthase complexes are identical. This work establishes the production of highly complex molecular machines in defined environments either as proteomicelles or as proteoliposomes as a new application of CF expression systems.  相似文献   

3.
Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO2 and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, 15NH4Cl was injected into the central pith of stem sections. The kinetics of 15N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of 15N derived from 15NH4Cl was almost completely inhibited. Injections of amido-15N glutamine demonstrated a potential for 15N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism.  相似文献   

4.
Lateral gene transfer has been identified as an important mode of genome evolution within prokaryotes. Except for the special case of gene transfer from organelle genomes to the eukaryotic nucleus, only a few cases of lateral gene transfer involving eukaryotes have been described. Here we present phylogenetic and gene order analyses on the small subunit of glutamate synthase (encoded by gltD) and its homologues, including the large subunit of sulfide dehydrogenase (encoded by sudA). The scattered distribution of the sudA and sudB gene pair and the phylogenetic analysis strongly suggest that lateral gene transfer was involved in the propagation of the genes in the three domains of life. One of these transfers most likely occurred between a prokaryote and an ancestor of diplomonad protists. Furthermore, phylogenetic analyses indicate that the gene for the small subunit of glutamate synthase was transferred from a low-GC gram-positive bacterium to a common ancestor of animals, fungi, and plants. Interestingly, in both examples, the eukaryotes encode a single gene that corresponds to a conserved operon structure in prokaryotes. Our analyses, together with several recent publications, show that lateral gene transfers from prokaryotes to unicellular eukaryotes occur with appreciable frequency. In the case of the genes for sulfide dehydrogenase, the transfer affected only a limited group of eukaryotes—the diplomonads—while the transfer of the glutamate synthase gene probably happened earlier in evolution and affected a wider range of eukaryotes.  相似文献   

5.
After the addition of ammonia to the culture medium, the concentration of glutamine in B. flavum cells increased in 20 s with a decrease in glutamate. In the subsequent 30 s, the glutamine concentration deceased again with an increase in glutamate. An enzyme system, which consisted of purified glutamine synthetase (GS) and glutamate synthase (GOGAT) with ATP- and NADPH-regenerating systems, was made up to study the functions of the GS/GOGAT pathway: concentrations of the substrates and of the enzymes were decided on according to the intracellular conditions. Changes in the concentrations of amino acids caused by the addition of ammonia to the system were very similar to those of intracellular glutamate and glutamine when ammonia was added to the bacterial culture. The time required for the complete formation of glutamate from 0.5 mM ammonia was about 4-times shorter in the GS/GOGAT system than in the system using purified glutamate dehydrogenase (GDH) and the NADPH-regenerating system. The glutamate synthase reaction in the GS/GOGAT system was inhibited by some amino acids much more markedly than in the standard assay mixture consisting of glutamine, α-ketoglutarate and NADPH. These results gave further evidence elucidating the operation of the GS/GOGAT pathway in ammonia assimilation, and suggested that a reconstructed enzyme system is useful for studying physiological mechanisms.  相似文献   

6.
Abstract: Because it is well known that excess branched-chain amino acids (BCAAs) have a profound influence on neurological function, studies were conducted to determine the impact of BCAAs on neuronal and astrocytic metabolism and on trafficking between neurons and astrocytes. The first step in the metabolism of BCAAs is transamination with α-ketoglutarate to form the branched-chain α-keto acids (BCKAs). The brain is unique in that it expresses two separate branched-chain aminotransferase (BCAT) isoenzymes. One is the common peripheral form [mitochondrial (BCATm)], and the other [cytosolic (BCATc)] is unique to cerebral tissue, placenta, and ovaries. Therefore, attempts were made to define the isoenzymes' spatial distribution and whether they might play separate metabolic roles. Studies were conducted on primary rat brain cell cultures enriched in either astroglia or neurons. The data show that over time BCATm becomes the predominant isoenzyme in astrocyte cultures and that BCATc is prominent in early neuronal cultures. The data also show that gabapentin, a structural analogue of leucine with anticonvulsant properties, is a competitive inhibitor of BCATc but that it does not inhibit BCATm. Metabolic studies indicated that BCAAs promote the efflux of glutamine from astrocytes and that gabapentin can replace leucine as an exchange substrate. Studying astrocyte-enriched cultures in the presence of [U-14C]glutamate we found that BCKAs, but not BCAAs, stimulate glutamate transamination to α-ketoglutarate and thus irreversible decarboxylation of glutamate to pyruvate and lactate, thereby promoting glutamate oxidative breakdown. Oxidation of glutamate appeared to be largely dependent on the presence of an α-keto acid acceptor for transamination in astrocyte cultures and independent of astrocytic glutamate dehydrogenase activity. The data are discussed in terms of a putative BCAA/BCKA shuttle, where BCATs and BCAAs provide the amino group for glutamate synthesis from α-ketoglutarate via BCATm in astrocytes and thereby promote glutamine transfer to neurons, whereas BCATc reaminates the amino acids in neurons for another cycle.  相似文献   

7.
8.
Two strains of Cyanidium caldarium, one able to utilize nitrate as a substrate, and the other not, were tested for the presence of enzymes of ammonia assimilation. The nitrate-assimilating strain exhibits glutamate dehydrogenase activity. By contrast, the other strain lacks glutamate dehydrogenase; it possesses high alanine dehydrogenase and l-alanine aminotransferase activities which suggest that this strain may incorporate ammonia through reductive amination of pyruvate and may form glutamate from 2-ketoglutarate by a transamination reaction with alanine. Neither strain reveals glutamate synthase activity. Both strains contain similar levels of glutamine synthetase.  相似文献   

9.
Abstract: CO2 fixation was measured in cultured astrocytes isolated from neonatal rat brain to test the hypothesis that the activity of pyruvate carboxylase influences the rate of de novo glutamate and glutamine synthesis in astrocytes. Astrocytes were incubated with 14CO2 and the incorporation of 14C into medium or cell extract products was determined. After chromatographic separation of 14C-labelled products, the fractions of 14C cycled back to pyruvate, incorporated into citric acid cycle intermediates, and converted to the amino acids glutamate and glutamine were determined as a function of increasing pyruvate carboxylase flux. The consequences of increasing pyruvate, bicarbonate, and ammonia were investigated. Increasing extracellular pyruvate from 0 to 5 mM increased pyruvate carboxylase flux as observed by increases in the 14C incorporated into pyruvate and citric acid cycle intermediates, but incorporation into glutamate and glutamine, although relatively high at low pyruvate levels, did not increase as pyruvate carboxylase flux increased. Increasing added bicarbonate from 15 to 25 mM almost doubled CO2 fixation. When 25 mM bicarbonate plus 0.5 mM pyruvate increased pyruvate carboxylase flux to approximately the same extent as 15 mM bicarbonate plus 5 mM pyruvate, the rate of appearance of [14C]glutamate and glutamine was higher with the lower level of pyruvate. The conclusion was drawn that, in addition to stimulating pyruvate carboxylase, added pyruvate (but not added bicarbonate) increases alanine aminotransferase flux in the direction of glutamate utilization, thereby decreasing glutamate as pyruvate + glutamate →α-ketoglutarate + alanine. In contrast to previous in vivo studies, the addition of ammonia (0.1 and 5 mM) had no effect on net 14CO2 fixation, but did alter the distribution of 14C-labelled products by decreasing glutamate and increasing glutamine. Rather unexpectedly, ammonia did not increase the sum of glutamate plus glutamine (mass amounts or 14C incorporation). Low rates of conversion of α-[14C]ketoglutarate to [14C]glutamate, even in the presence of excess added ammonia, suggested that reductive amination of α-ketoglutarate is inactive under conditions studied in these cultured astrocytes. We conclude that pyruvate carboxylase is required for de novo synthesis of glutamate plus glutamine, but that conversion of α-ketoglutarate to glutamate may frequently be the rate-limiting step in this process of glutamate synthesis.  相似文献   

10.
Pyridoxal 5′-phosphate (PLP) is required as a cofactor by many enzymes. The predominant de novo biosynthetic route is catalyzed by a heteromeric glutamine amidotransferase consisting of the synthase subunit Pdx1 and the glutaminase subunit Pdx2. Previously, Bacillus subtilis PLP synthase was studied by X-ray crystallography and complex assembly had been characterized by isothermal titration calorimetry. The fully assembled PLP synthase complex contains 12 individual Pdx1/Pdx2 glutamine amidotransferase heterodimers. These studies revealed the occurrence of an encounter complex that is tightened in the Michaelis complex when the substrate l-glutamine binds. In this study, we have characterized complex formation of PLP synthase from the malaria-causing human pathogen Plasmodium falciparum using isothermal titration calorimetry. The presence of l-glutamine increases the tightness of the interaction about 30-fold and alters the thermodynamic signature of complex formation. The thermodynamic data are integrated in a 3D homology model of P. falciparum PLP synthase. The negative experimental heat capacity (Cp) describes a protein interface that is dominated by hydrophobic interactions. In the absence of l-glutamine, the experimental Cp is less negative than in its presence, contrasting to the previously characterised bacterial PLP synthase. Thus, while the encounter complexes differ, the Michaelis complexes of plasmodial and bacterial systems have similar characteristics concerning the relative contribution of apolar/polar surface area. In addition, we have verified the role of the N-terminal region of PfPdx1 for complex formation. A “swap mutant” in which the complete αN-helix of plasmodial Pdx1 was exchanged with the corresponding segment from B. subtilis shows cross-binding to B. subtilis Pdx2. The swap mutant also partially elicits glutaminase activity in BsPdx2, demonstrating that formation of the protein complex interface via αN and catalytic activation of the glutaminase are linked processes.  相似文献   

11.
The aim of this study was to determine the effects of α-ketoglutarate on neutrophil (PMN), free α-keto and amino-acid profiles as well as important reactive oxygen species (ROS) produced [superoxide anion (O2 ?), hydrogen peroxide (H2O2)] and released myeloperoxidase (MPO) acitivity. Exogenous α-ketoglutarate significantly increased PMN α-ketoglutarate, pyruvate, asparagine, glutamine, asparatate, glutamate, arginine, citrulline, alanine, glycine and serine in a dose as well as duration of exposure dependent manner. Additionally, in parallel with intracellular α-ketoglutarate changes, increases in O2 formation, H2O2-generation and MPO acitivity have also been observed. We therefore believe that α-ketoglutarate is important for affecting PMN “susceptible free amino- and α-keto acid pools” although important mechanisms and backgrounds are not yet completely explored. Moreover, our results also show very clearly that changes in intragranulocytic α-ketoglutarate levels are relevant metabolic determinants in PMN nutrition considerably influencing and modulating the magnitude and quality of the granulocytic host defense capability as well as production of ROS.  相似文献   

12.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

13.
A cell-free chloroplast preparation obtained from greening cucumber cotyledons was tested for its ability to synthesize protoporphyrin IX from compounds previously postulated to be precursors of δ-aminolevulinic acid in plants, namely, glutamate, glutamine, α-ketoglutarate, glycine, and succinate. Of these, only glutamate caused a marked stimulation of protoporphyrin biosynthesis. A mixture of cofactors (ATP, KH2PO4, glutathione, coenzyme A, and NAD+), which was previously shown to be necessary for the incorporation of δ-aminolevulinic acid into protochlorophyll and for the maintenance of etioplasts in vitro also proved to be necessary for the conversion of glutamate to protoporphyrin IX.  相似文献   

14.
The mitochondrial small subunit ribosomal RNA (rns) gene of the ascomycetous fungus Ophiostoma minus [strain WIN(M)371] was found to contain a group IC2 and a group IIB1 intron at positions mS569 and mS952 respectively. Both introns have open reading frames (ORFs) embedded that encode double motif LAGLIDADG homing endonucleases (I-OmiI and I-OmiII respectively). Codon-optimized versions of I-OmiI and I-OmiII were synthesized for overexpression in Escherichia coli. The in vitro characterization of I-OmiII showed that it is a functional homing endonuclease that cleaves the rns target site two nucleotides upstream (sense strand) of the intron insertion site generating 4 nucleotide 3′ overhangs. The endonuclease activity of I-OmiII was tested using linear and circular substrates and cleavage activity was evaluated at various temperatures. The I-OmiI protein was expressed in E. coli, but purification was difficult, thus the endonuclease activity of this protein was tested via in vivo assays. Overall this study showed that there are many native forms of functional homing endonucleases yet to be discovered among fungal mtDNA genomes.  相似文献   

15.
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis.  相似文献   

16.
Marine phages have an astounding global abundance and ecological impact. However, little knowledge is derived from phage genomes, as most of the open reading frames in their small genomes are unknown, novel proteins. To infer potential functional and ecological relevance of sequenced marine Pseudoalteromonas phage H105/1, two strategies were used. First, similarity searches were extended to include six viral and bacterial metagenomes paired with their respective environmental contextual data. This approach revealed ‘ecogenomic'' patterns of Pseudoalteromonas phage H105/1, such as its estuarine origin. Second, intrinsic genome signatures (phylogenetic, codon adaptation and tetranucleotide (tetra) frequencies) were evaluated on a resolved intra-genomic level to shed light on the evolution of phage functional modules. On the basis of differential codon adaptation of Phage H105/1 proteins to the sequenced Pseudoalteromonas spp., regions of the phage genome with the most ‘host''-adapted proteins also have the strongest bacterial tetra signature, whereas the least ‘host''-adapted proteins have the strongest phage tetra signature. Such a pattern may reflect the evolutionary history of the respective phage proteins and functional modules. Finally, analysis of the structural proteome identified seven proteins that make up the mature virion, four of which were previously unknown. This integrated approach combines both novel and classical strategies and serves as a model to elucidate ecological inferences and evolutionary relationships from phage genomes that typically abound with unknown gene content.  相似文献   

17.
Active Subunits of Escherichia coli Glutamate Synthase   总被引:8,自引:6,他引:2       下载免费PDF全文
The large and small subunits of Escherichia coli glutamate synthase were isolated. The small subunit catalyzes the NH3-dependent synthesis of glutamate. The large subunit exhibits glutaminase activity.  相似文献   

18.
Glutathione (GSH) is an intracellular antioxidant synthesized from glutamate, cysteine and glycine. The human erythrocyte (red blood cell, RBC) requires a continuous supply of glutamate to prevent the limitation of GSH synthesis in the presence of sufficient cysteine, but the RBC membrane is almost impermeable to glutamate. As optimal GSH synthesis is important in diseases associated with oxidative stress, we compared the rate of synthesis using two potential glutamate substrates, α-ketoglutarate and glutamine. Both substrates traverse the RBC membrane rapidly relative to many other metabolites. In whole RBCs partially depleted of intracellular GSH and glutamate, 10 mm extracellular α-ketoglutarate, but not 10 mm glutamine, significantly increased the rate of GSH synthesis (0.85 ± 0.09 and 0.61 ± 0.18 μmol·(L RBC)(-1) ·min(-1), respectively) compared with 0.52 ± 0.09 μmol·(L RBC)(-1) ·min(-1) for RBCs without an external glutamate source. Mathematical modelling of the situation with 0.8 mm extracellular glutamine returned a rate of glutamate production of 0.36 μmol·(L RBC)(-1) ·min(-1), while the initial rate for 0.8 mM α-ketoglutarate was 0.97 μmol·(L RBC)(-1) ·min(-1). However, with normal plasma concentrations, the calculated rate of GSH synthesis was higher with glutamine than with α-ketoglutarate (0.31 and 0.25?μmol·(L RBC)(-1) ·min(-1), respectively), due to the substantially higher plasma concentration of glutamine. Thus, a potential protocol to maximize the rate of GSH synthesis would be to administer a cysteine precursor plus a source of α-ketoglutarate and/or glutamine.  相似文献   

19.
Enzymes and regulatory proteins involved in the cascade control of glutamine synthetase activity of Escherichia coli have been separated from one another and the effects of numerous metabolites on each step in the cascade have been determined. The adenylyl transferase (ATase) -catalyzed adenylylation of glutamine synthetase, which requires the presence of the unmodified form of the regulatory protein PII is enhanced by glutamine and is inhibited by either α-ketoglutarate (α-KG) or the uridylylated form (PII·UMP) of the regulatory protein. PII·UMP and α-KG act synergistically to inhibit this activity. In contrast, the PII·UMP-dependent, ATase-catalyzed deadenylylation of glutamine synthetase requires α-KG and ATP and is inhibited by glutamine or PII and synergistically by glutamine plus PII. The capacity of uridylyl transferase (UTase) to catalyze the uridylylation of PII is dependent on the presence of α-KG and ATP and is inhibited by glutamine. The deuridylylation of PII·UMP by the uridylyl removing enzyme (UR) is enhanced by glutamine but is unaffected by α-KG. However, CMP, UMP, and CoA all inhibit activity at 10?6m. High concentrations of ATase inhibit both UR and UTase activities, presumably by binding the regulatory protein. Of more than 50 substances that alter the activity of at least one enzyme in the cascade, only α-KG and glutamine affect the activity at every step. This accounts for the observation that glutamine synthetase activity in vivo is very sensitive to the intracellular ratio of α-KG to glutamine.  相似文献   

20.
An analysis of the complete nucleotide sequence of the composite tetracycline-resistance transposon Tn10 (9147 bp) from the Salmonella typhi conjugative plasmid R27 is presented. A comparison of the protein sequences from IS10-right and IS10-left transposases has identified four amino acid differences. These residues appear to play an important role in normal transposase function and may account for the differences in exhibited transposition activities. The tetracycline determinants encoded by this version of Tn10 share >99% identity with those of Tn10R100, demonstrating the conservation that exists between these transposons. A previously uncharacterized 3000-bp region of Tn10 contains four putative open reading frames. One of these open reading frames shares 55% identity with the glutamate permease protein sequence from Haemophilus influenzae although it was unable to complement an Escherichia coli glutamate permease mutant, with which it shares 51% identity. The three remaining putative open reading frames are arranged as a discrete genetic unit adjacent to the glutamate permease homolog and are transcribed in the opposite direction. Two of these open reading frames are homologous with Bacillus subtilis proteins of unknown functions while the other has no homologs in the database. The presence of an aminoacyl-tRNA synthetase class II motif in one of these open reading frames in combination with the glutamate permease homolog allows us to postulate that this region of Tn10 could once have played a role in amino acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号