首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Results of a number of pharmacological studies suggest that catecholamines play a regulatory role in cleavage, morphogenesis and cell differentiation during early animal embryonic development. Few studies, however, have actually assayed for levels of catecholamines in these early embryos by methods that are both sensitive and specific. In this investigation the catecholamines dopamine, norepinephrine and epinephrine and their precursor, dopa and metabolites were determined in eight different embryonic stages of the sea urchin, Lytechinus pictus from hatched blastula to late pluteus larva, using high performance liquid chromatography with electrochemical detection. Levels of each of the catecholamines exhibited unique developmental profiles and are consistent with a role for epinephrine in blastula and early gastrula embryos and for norepinephrine in gastrulation. Changes in levels of catecholamine precursor and metabolites suggest a changing pattern of synthetic and metabolic enzyme activity, which can, for the most part, explain the fluctuations in catecholamine levels during development from blastula to the pluteus larva stage.  相似文献   

2.
Changes in plastid envelope polypeptides during chloroplast development   总被引:1,自引:1,他引:0  
A. H. Cobb  A. R. Wellburn 《Planta》1974,121(3):273-282
  相似文献   

3.
The extent of differential gene expression during morphogenesis of Mucor racemosus was investigated by two-dimensional polyacrylamide gel electrophoresis of neutral and acidic polypeptides. Cellular proteins were labeled with [35S]methionine in cells growing in either the yeast or hyphal form, or in yeast cells undergoing the transition of hyphae. The results showed that of the 400 to 500 polypeptides resolved by electrophoresis, relatively few were specific to one or the other morphological form. The major change in the patterns of proteins synthesized during morphogenesis was a change in rates of synthesis of individual polypeptides. Experiments in which morphogenesis was affected under aerobic or anaerobic conditions showed that the majority of changes in the protein patterns were associated with morphogenesis and were not a specific response to O2.  相似文献   

4.
The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.  相似文献   

5.
6.
7.
BACKGROUND: Folic acid is essential for the synthesis of nucleotides and methyl transfer reactions. Folic acid-binding protein one (Folbp1) is the primary mediator of folic acid transport into murine cells. Folbp1 knockout mouse embryos die in utero with multiple malformations, including severe congenital heart defects (CHDs). Although maternal folate supplementation is believed to prevent human conotruncal heart defects, its precise role during cardiac morphogenesis remains unclear. In this study, we examined the role of folic acid on the phenotypic expression of heart defects in Folbp1 mice, mindful of the importance of neural crest cells to the formation of the conotruncus. METHODS: To determine if the Folbp1 gene participates in the commitment and differentiation of the cardiomyocytes, relative levels of dead and proliferating precursor cells in the heart were examined by flow cytometry, Western blot, and immunohistostaining. RESULTS: Our studies revealed that impaired folic acid transport results in extensive apoptosis-mediated cell death, which concentrated in the interventricular septum and truncus arteriosus, thus being anatomically restricted to the two regions of congenital heart defects. Together with a reduced proliferative capacity of the cardiomyocytes, the limited size of the available precursor cell pool may contribute to the observed cardiac defects. Notably, there is a substantial reduction in Pax-3 expression in the region of the presumptive migrating cardiac neural crest, suggesting that this cell population may be the most severely affected by the massive cell death. CONCLUSIONS: Our findings demonstrate for the first time a prominent role of the Folbp1 gene in mediating susceptibility to heart defects.  相似文献   

8.
Mitochondria and chloroplasts depend upon each other; photosynthesis provides substrates for mitochondrial respiration and mitochondrial metabolism is essential for sustaining photosynthetic carbon assimilation. In addition, mitochondrial respiration protects photosynthesis against photoinhibition by dissipating excess redox equivalents from the chloroplasts. Genetic defects in mitochondrial function result in an excessive reduction and energization of the chloroplast. Thus, it is clear that the activities of mitochondria and plastids need to be coordinated, but the manner by which the organelles communicate to coordinate their activities is unknown. The regulator of alternative oxidase (rao1) mutant was isolated as a mutant unable to induce AOX1a expression in response to the inhibitor of the mitochondrial cytochrome c reductase (complex III), antimycin A. RAO1 encodes the nuclear localized cyclin-dependent kinase E1 (CDKE1). Interestingly, the rao1 mutant demonstrates a genome uncoupled phenotype also in response to redox changes in the photosynthetic electron transport chain. Thus, CDKE1 was shown to regulate both LIGHT HARVESTING COMPLEX B (LHCB) and ALTERNATIVE OXIDASE 1 (AOX1a) expression in response to retrograde signals. Our results suggest that CDKE1 is a central nuclear component integrating mitochondrial and plastid retrograde signals and plays a role in regulating energy metabolism during the response to stress.  相似文献   

9.
Polyamines (putrescine, spermidine, and spermine) are essential for placental growth and angiogenesis. However, little is known about changes in polyamine synthesis associated with development of the ovine conceptus (embryo/fetus and associated placental membranes). We hypothesized that rates of placental polyamine synthesis were maximal during the rapid placental growth that occurs in the first half of pregnancy. This hypothesis was tested using ewes between Days 30 and 140 of gestation. Columbia cross-bred ewes were hysterectomized on Days 30, 40, 60, 80, 100, 120, or 140 of gestation (Day 0 = mating; n = 4 ewes/day) to obtain placentomes, intercotyledonary placenta, intercaruncular endometrium, and allantoic as well as amniotic fluids. The tissues were analyzed for ornithine decarboxylase (ODC) and arginase activities; arginine, ornithine, and polyamine concentrations; and polyamine synthesis using radiochemical and chromatographic methods. Maximal ODC and arginase activities and the highest rates of polyamine synthesis were observed in all tissues on Day 40 of gestation. Concentrations of ornithine and polyamines in placentomes and intercaruncular endometrium also peaked on Day 40 of gestation. In ovine allantoic and amniotic fluids, polyamines were most abundant during early (Days 40-60) and late (Days 100-140) gestation, respectively. Amniotic fluid spermine increased progressively with advancing gestation. Results of the present study indicate metabolic coordination among the several integrated pathways that support high rates of polyamine synthesis in the placenta and endometrium during early pregnancy. Our findings may have important implications for both intrauterine growth retardation and fetal origins of diseases in adults.  相似文献   

10.
The distribution and ultrastructure of glycogen deposits were investigated in the murine tooth germ by histochemical periodic acid-Schiff (PAS) staining and transmission electron microscopy. Lower and upper first molars were examined in mouse embryos at embryonic days 11.5–17 (E11.5–E17) and in 2-day-old postnatal (P2) mice. The oral and dental epithelia and the mesenchymal cells were generally PAS-positive during tooth morphogenesis. PAS-negative cells were present at E13 in the distal tip of the tooth bud epithelium and in the contacting mesenchyme, and this complete lack of PAS reactivity continued in the dental papilla mesenchyme and inner enamel epithelium during the cap and bell stages. The lack of glycogen deposits in the interacting epithelium and mesenchyme during early morphogenesis may be associated with their demonstrated high signaling activities. Mesenchymal cells in the dental follicle consistently possessed small clusters or large pools of glycogen, which disappeared by P2. Since an intense PAS reaction was seen in mesenchymal cells at future bone sites, the glycogen in the dental follicle cells may be associated with their development into hard-tissue-forming cells. Ultrastructural observation of the enamel organ cells from the cap to early bell stages (E14–E15) revealed the occurrence of glycogen pools, which were associated with the Golgi apparatus and with vesicles having amorphous contents. Glycogen particles were also occasionally present inside vesicles or in the extracellular matrix. These may be associated with the exocytosis of glycosaminoglycan components into extracellular spaces and the formation of the stellate reticulum. Received: 9 November 1998 / Accepted: 17 January 1999  相似文献   

11.
12.
Developmental changes in intestinal glucose transporter mRNA levels.   总被引:2,自引:0,他引:2  
Developmental changes in glucose transporter mRNA levels in the jejunum of rats of different ages were examined by using slot blot RNA analysis. The level of SGLT1 mRNA did not change significantly through life. The GLUT5 mRNA level was highest in 10-day-old rats and then decreased reaching the adult level by day 20 after birth. The GLUT2 mRNA level was low in rats of 5 and 10 days old, but then increased progressively reaching the adult value by day 25 after birth. These results indicate that the expressions of intestinal facilitative glucose transporter genes change markedly in the third week after birth.  相似文献   

13.
14.
The megasporocyte of Isoetes englemanni at the leptotene-zygotene interval of meiosis contains 4 disk-shaped proplastids about 12 mum in diameter. The disposition of these organelles in the cell is such that each of the four megaspores delimited during cytokinesis contains a single proplastid. During prophase and following their incorporation into the spores, the proplastids are undergoing fission by budding. The buds are first discernible as low surface evaginations which contain a complement of granular somal material, some wefts of tubular membrane and osmiophilic globuli, in addition to a number of vesicles derived by invagination from the inner membrane of the proplastid envelope. As the evaginations emerge they enlarge and the link with the parent body is reduced to a narrow channel. At this stage one or more of the vesicles derived from the proplastid envelope comes into register with the lumen of the channel. One vesicle is transported into the lumen, elongating as it passes through. The passage of the vesicle into the channel destroys the connexion between the matrix of the evagination and the stroma of the proplastid. The occurrence in the cytoplasm around the proplastid of bodies not connected to the proplastid, but identical in structure to the evaginations and carrying a membranous tail suggests that the evaginations are released by abscission of the channel close to the surface of the parent body. After release the bodies undergo division by constriction. Regression of the tail follows division in those bodies which are regular in outline and in which the matrix is ultrastructurally similar to the stroma of the parent organelle. The process does not seem to occur in co-existing forms which have assumed an irregular outline and have a less-opque matrix. The more mature megaspore of Isoetes contains proplastids up to 4 mum in greatest dimension. The stroma in these is dense and granular and contains membrane-bound vesicles, osmiophilic globuli, starch granules and wefts of tubular membrane. There is no evidence that the large budding organelle persists to this later stage in development. The resemblance of the plastids in the more mature megaspore to the bodies produced by evagination earlier in development suggests a common identity. The observations and interpretations lead to the proposition that the plastids in Isoetes englemanni are autonomous. This situation contrasts with the one described for another heterosporous haploid dioecious pteridophyte, Marsilea vestita, where nucleocytoplasmic interaction has been interpreted as the de novo creation of plastids and mitochondria following the elimination by autophagy of the organelles inherited at meiosis. It is suggested that an explanation to account for the 2 different mechanisms might be sought in regard to the degree of developmental success enjoyed by the individual megaspores in the 2 plants. In Isoetes all 4 megaspores of every tetrad survive and develop, while in Marsilea the mature megasporangium contains a single functional megaspore.  相似文献   

15.
16.
Levels of pituitary growth hormone (GH) messenger RNA (mRNA) were compared in groups of genetically obese (fa/fa) and lean (Fa/-) littermate male Zucker rats at four different ages, 3, 5, 9, and 11 weeks, in order to determine the earliest age at which a difference between the two groups could be detected. No difference was seen in three-week-old animals. Five weeks of age was the earliest time at which the level of GH mRNA was significantly decreased in the obese rats; this decrease was present at all subsequent ages. Mean serum growth hormone levels were lower in obese animals at all ages, but the differences were not statistically significant because of the large individual variation associated with the pulsatile nature of GH release. The earliest occurrence of differences in GH mRNA level is later than some of the obesity associated abnormalities present in adipose tissue. The earliest time of the GH mRNA differences can be associated with the time when decreased protein deposition is initially seen in the obese rats. Because of this association, decreased GH mRNA may enhance the development of obesity.  相似文献   

17.
Developmental changes in keratin patterns during epidermal maturation   总被引:10,自引:0,他引:10  
The biochemical maturation of the epidermis of Xenopus laevis was examined through an identification of the keratins expressed at selected stages of development. The keratin patterns obtained were compared to those observed in the adult epidermis and two Xenopus non-epidermal, epithelial cell lines. The keratins expressed during development can be grouped into three classes: (1) keratins which are restricted to the embryonic epidermis (58 and 59 kDa); (2) keratins which are prominent during development, but become minor components of the adult epidermis (47, 48, and 60 kDa); and (3) keratins which accumulate during development to become the major keratins of the adult epidermis (49, 53, 56, and 63 kDa). The embryo-specific keratins are present at all developmental stages prior to metamorphosis which we have investigated, but disappear when the epidermis keratinizes during metamorphosis. Both class 1 and 2 keratins, while undetectable or minor components of the adult skin, are present in the two non-epidermal cell lines. In contrast, the class 3 keratins show little overlap with the keratins of these cell lines. All of the class 3 keratins appear after hatching with the exception of the 53-kDa keratin which is present at the earliest developmental stage which we have examined. All of the major keratins of the adult epidermis accumulate as metamorphosis proceeds, while the embryo-restricted keratins are gradually lost.  相似文献   

18.
19.
Chlamydomonas reinhardtii transitions from mitotically dividing vegetative cells to sexually competent gametes of two distinct mating types following nutrient deprivation. Gametes of opposite mating type interact via their cilia, initiating an intraciliary signaling cascade and ultimately fuse forming diploid zygotes. The process of gametogenesis is genetically encode, and a previous study revealed numerous significant changes in mRNA abundance during this life-cycle transition. Here we describe a proteomic analysis of cilia derived from vegetative and gametic cells of both mating types in an effort to assess the global changes that occur within the organelle during this process. We identify numerous membrane- and/or matrix-associated proteins in gametic cilia that were not detected in cilia from vegetative cells. This includes the pro-protein from which the GATI-amide gametic chemotactic modulator derives, as well as receptors, a dynamin-related protein, ammonium transporters, two proteins potentially involved in the intraciliary signaling cascade-driven increase in cAMP, and multiple proteins with a variety of interaction domains. These changes in ciliary composition likely directly affect the functional properties of this organelle as the cell transitions between life-cycle stages.  相似文献   

20.
Quantitative studies of ontogenetic changes in the levels of brain‐derived neurotrophic factor (BDNF) mRNA and its effector, BDNF protein, are not available for the retinal projection system. We used an electrochemiluminescence immunoassay to measure developmental changes in the tissue concentration of BDNF within the hamster retina and superior colliculus (SC). In the SC, we first detected BDNF (about 9 pg/mg tissue) on embryonic day 14 (E14). BDNF protein concentration in the SC rises about fourfold between (E14) and postnatal day 4 (P4), remains at a plateau through P15, then declines by about one‐third to attain its adult level by P18. By contrast, BDNF protein concentration in the retina remains low (about 1 pg/mg tissue) through P12, then increases 4.5‐fold to attain its adult level on P18. The developmental changes in retinal and collicular BDNF protein concentrations are temporally correlated with multiple events in the structural and functional maturation of the hamster retinal projection system. Our data suggest roles for BDNF in the cellular mechanisms underlying some of these events and are crucial to the design of experiments to examine those roles. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 173–187, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号