首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested the hypothesis that the renin-angiotensin system (RAS) protects the contractile function of the myocardium against the damaging effect of hypoxia-reoxygenation. For this purpose, the contractility of isolated papillary muscles from wild-type (WT) rats and from rats expressing human renin and angiotensinogen as transgenes (TGR) was compared. After 15 min of hypoxia, peak force (PF) was decreased to 24 +/- 5% of the normoxic values in TGR (n = 10) and to 18 +/- 1% in WT rats (n = 12). PF and relaxation rates recovered completely in TGR but not in WT rats during 45 min of reoxygenation. Improved contractility of the papillary muscles from TGR during hypoxia-reoxygenation correlated with increased glutathione peroxidase activities and creatine kinase (CK)-MB and CK-BB isoenzyme levels. On the other hand, inhibition of the RAS with ramipril (1 mg/kg body wt for 3 wk) in WT animals resulted in deterioration of the contractile function of the papillary muscles during reoxygenation compared with untreated rats. These findings suggest that activation of the RAS protects contractile function of the cardiac muscle against hypoxia-reoxygenation, possibly through changes in CK isoenzymes and enhanced antioxidant capacity.  相似文献   

2.
Brief ischemia or hypoxia has been found to protect the heart against susbsequent long-lasting ischemia and to improve contractile dysfunction as well to reduce cell necrosis and the incidence of lethal arrhythmias. This phenomenon, termed preconditioning (PC) has been demonstrated in different species. However, little is known about PC in guinea pigs. Moreover, electrophysiological changes underlying protection have not been studied so far in conjuntion with force recovery in a setting of PC. The aim of the study was to study PC in a guinea pig papillary muscle, using recovery of contractility after long hypoxic challenge as the main end-point of protection, and to investigate concominant electrophysiological alterations. In guinea pig papillary muscle preparations contracting isometrically (paced at 2 Hz), transmembrane action potentials (AP) and developed force (DF) were recorded by conventional microelectrode technique and a force tranducer. In addition, effective refractory periods (ERP) were determined. Hypoxia was induced by superfusion with 100% N2 (pO2 < 5 kPa) and pacing at 3,3 Hz. In the control group, long hypoxia lasted for 45 min and was followed by 30 min reoxygenation. In the PC group, muscles were subjected to 5 min hypoxia followed by 10 min recovery prior to sustained hypoxia/reoxygenation. Results: Long hypoxia induced a similar depression of DF in both, PC and control groups. However, a loss of contractile activity occured earlier in the PC group. AP duration and ERP decreased faster and were significantly shorter after PC. Upon reoxygenation, preconditioned muscles showed significantly better recovery of function (DF 86% of prehypoxic value vs. 36% in controls; p < 0,05). AP and ERP were completely restored in both, PC and control groups. Guinea pig papillary muscle can be preconditioned with a brief hypoxic challenge against contractile dysfunction upon long-lasting hypoxia/reoxygenation. Shortening of AP and loss of contractility occured more quickly during hypoxia and may participate in the protective effect of preconditioning. Possible mechanisms might involve facilitated opening of KATP-dependent channels.  相似文献   

3.
The aim of this study was to investigate the tolerance of failing myocardium from postinfarction rats to simulated ischemia. Myocardial infarction (MI) was induced by ligation of the left coronary artery in male Wistar rats. Isometric force and free intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in isolated left ventricular papillary muscles from sham-operated and post-MI animals 6 wk after surgery. Ischemia was simulated by using fluorocarbon immersion with hypoxia. Results showed that mechanical performance was depressed during the period of hypoxia in physiological salt solution (44 +/- 7% of baseline in sham vs. 30 +/- 6% of baseline in MI, P < 0.05) or ischemia (16 +/- 2% of baseline in sham vs. 9 +/- 1% of baseline in MI, P < 0.01) accompanied by no corresponding decrease of peak [Ca(2+)](i) (hypoxia: 51 +/- 8% of baseline in sham vs. 46 +/- 7% of baseline in MI, P = NS; ischemia: 47 +/- 5% of baseline in sham, 39 +/- 7% of baseline in MI, P = NS). After reoxygenation, [Ca(2+)](i) rapidly returned to near preischemic basal levels, whereas developed tension in fluorocarbon remained significantly lower. This dissociation between peak [Ca(2+)](i) and isometric contractility was more pronounced in the failing myocardium from postinfarction rats. In conclusion, more severe impairment of [Ca(2+)](i) homeostasis in the failing myocardium from postinfarction rats increases susceptibility to ischemia-reperfusion injury.  相似文献   

4.
We tested the hypothesis that left ventricular (LV) remodeling late after myocardial infarction (MI) is associated with myocyte apoptosis in myocardium remote from the infarcted area and is related temporally to LV dilation and contractile dysfunction. One, four, and six months after MI caused by coronary artery ligation, LV volume and contractile function were determined using an isovolumic balloon-in-LV Langendorff technique. Apoptosis and nuclear morphology were determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) and Hoechst 33258 staining. Progressive LV dilation 1-6 mo post-MI was associated with reduced peak LV developed pressure (LVDP). In myocardium remote from the infarct, there was increased wall thickness and expression of atrial natriuretic peptide mRNA consistent with reactive hypertrophy. There was a progressive increase in the number of TUNEL-positive myocytes from 1 to 6 mo post-MI (2.9-fold increase at 6 mo; P < 0. 001 vs. sham). Thus LV remodeling late post-MI is associated with increased apoptosis in myocardium remote from the area of ischemic injury. The frequency of apoptosis is related to the severity of LV dysfunction.  相似文献   

5.
Previous studies in adult myocytes isolated from rat hearts 3-9 wk after myocardial infarction (MI) demonstrated abnormal contractility and decreased Na(+)/Ca(2+) exchanger (NCX1) activity. In addition, a program of high-intensity sprint training (HIST) instituted shortly after MI restored both contractility and NCX1 activity toward normal. The present study examined the hypotheses that reduced NCX1 activity caused abnormal contractility in myocytes isolated from sedentary (Sed) rat hearts 9-11 wk after coronary artery ligation and that HIST ameliorated contractile dysfunction in post-MI myocytes by increasing NCX1 activity. The approach was to upregulate NCX1 in MI-sedentary (MISed) myocytes and downregulate NCX1 in MI-exercised (MIHIST) myocytes by adenovirus-mediated gene transfer. Overexpression of NCX1 in MISed myocytes did not affect sarco(endo)plasmic reticulum Ca(2+)-ATPase and calsequestrin levels but rescued contractile abnormalities observed in MISed myocytes. That is, at 5 mM extracellular Ca(2+) concentration, the subnormal contraction amplitude in MISed myocytes (compared with Sham myocytes) was increased toward normal by NCX1 overexpression, whereas at 0.6 mM extracellular Ca(2+) concentration the supernormal contraction amplitude in MISed myocytes was lowered. Conversely, NCX1 downregulation by antisense in MIHIST myocytes abolished the beneficial effects of HIST on contraction amplitudes in MI myocytes. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in post-MI myocytes and that HIST ameliorated contractile dysfunction in post-MI myocytes partly by enhancing NCX1 activity.  相似文献   

6.
Immunoliposome (IL) targeting to areas of inflammation after an acute myocardial infarction (MI) could provide the means by which pro-angiogenic compounds can be selectively targeted to the infarcted region. The adhesion of model drug carriers and ILs coated with an antibody to P-selectin was quantified in a rat model of MI following left coronary artery ligation. Anti-P-selectin coated model drug carriers showed a 140% and 180% increase in adhesion in the border zone of the MI 1 and 4 h post-MI, respectively. Radiolabeled anti-P-selectin ILs injected immediately post-MI and allowed to circulate 24 h showed an 83% increase in targeting to infarcted myocardium when compared to adjacent non-infarcted myocardium. Radiolabeled anti-P-selectin ILs injected 4 h post-MI and allowed to circulate for 24 h showed a 92% increase in accumulation in infarcted myocardium when compared to adjacent non-infarcted myocardium. Targeting to upregulated adhesion molecules on the endothelium provides a promising strategy for selectively delivering compounds to the infarct region of the myocardium using our liposomal-based drug delivery vehicle.  相似文献   

7.
We tested the hypothesis that overstretching the myocardium could induce and/or exacerbate contractile dysfunction via stretch-activated (SA) ion channels. Maximum developed tension (T(max)), normalized to a control value, was compared in guinea pig papillary muscles held at one of three resting lengths (physiological stretch, overstretch, and unloaded) for 85 min. Overstretched muscles exhibited decreased contractile force (T(max) = 0.77 +/- 0.03) compared with physiological and unloaded muscles (T(max) = 0.93 +/- 0.05 and 1.03 +/- 0.07, respectively). Gd(3+), an SA channel antagonist, eliminated the adverse effect of overstretching (T(max) = 0.98 +/- 0.06), but nifedipine, a dihydropyridine (DHP) antagonist of L-type calcium channels, did not (T(max) = 0.82 +/- 0.04). Exposure to modified hypoxia-reoxygenation (MHR) during physiological stretch resulted in decreased contractility (T(max) = 0.63 +/- 0.07), an effect that was exacerbated by overstretching (T(max) = 0.44 +/- 0.04). Gd(3+) mitigated the effects of overstretch during MHR (T(max) = 0.64 +/- 0.05), but DHP did not (T(max) = 0.48 +/- 0.04). These data suggest that overstretching of the myocardium contributes to contractile abnormalities via SA channels that are distinct from L-type calcium channels.  相似文献   

8.
After myocardial infarction (MI), the left ventricle (LV) undergoes ventricular remodeling characterized by progressive global dilation, infarct expansion, and compensatory hypertrophy of the noninfarcted myocardium. Little attention has been given to the response of remodeling myocardium to additional hemodynamic overload. Studies have indicated that gender may influence remodeling and the response to both MI and hemodynamic overload. We therefore determined 1) structural and function consequences of superimposing hemodynamic overload (systemic hypertension) on remodeling myocardium after a MI and 2) the potential influence of gender on this remodeling response. Male and female Dahl salt-sensitive and salt-resistant rats underwent coronary ligation, resulting in similar degrees of MI. One week post-MI, all rats were placed on a high-salt diet. Four groups were then studied 4 wk after initiation of high-salt feeding: MI female, MI female + hypertension, MI male, and MI male + hypertension. Hypertension-induced pressure overload resulted in additional comparable degrees of myocardial hypertrophy in both females and males. In females, hypertension post-MI resulted in concentric hypertrophy with no additional cavity dilation and no measurable scar thinning. In contrast, in males, hypertension post-MI resulted in eccentric hypertrophy, further LV cavity dilation, and scar thinning. Physiologically, concentric hypertrophy in post-MI hypertensive females resulted in elevated contractile function, whereas eccentrically hypertrophied males had no such increase. Female gender influences favorably the remodeling and physiological response to hemodynamic overload after large MI.  相似文献   

9.
10.
Injectable hydrogels are a potential therapy for mitigating adverse left ventricular (LV) remodeling after myocardial infarction (MI). Previous studies using magnetic resonance imaging (MRI) have shown that hydrogel treatment improves systolic strain in the borderzone (BZ) region surrounding the infarct. However, the corresponding contractile properties of the BZ myocardium are still unknown. The goal of the current study was to quantify the in vivo contractile properties of the BZ myocardium post-MI in an ovine model treated with an injectable hydrogel. Contractile properties were determined 8 weeks following posterolateral MI by minimizing the difference between in vivo strains and volume calculated from MRI and finite element model predicted strains and volume. This was accomplished by using a combination of MRI, catheterization, finite element modeling, and numerical optimization. Results show contractility in the BZ of animals treated with hydrogel injection was significantly higher than untreated controls. End-systolic (ES) fiber stress was also greatly reduced in the BZ of treated animals. The passive stiffness of the treated infarct region was found to be greater than the untreated control. Additionally, the wall thickness in the infarct and BZ regions was found to be significantly higher in the treated animals. Treatment with hydrogel injection significantly improved BZ function and reduced LV remodeling, via altered MI properties. These changes are linked to a reduction in the ES fiber stress in the BZ myocardium surrounding the infarct. The current results imply that injectable hydrogels could be a viable therapy for maintaining LV function post-MI.  相似文献   

11.
Hypoxia impairs skeletal muscle function, but the precise mechanisms are incompletely understood. In hypoxic rat diaphragm muscle, generation of peroxynitrite is elevated. Peroxynitrite and other reactive nitrogen species have been shown to impair contractility of skinned muscle fibers, reflecting contractile protein dysfunction. We hypothesized that hypoxia induces contractile protein dysfunction and that reactive nitrogen species are involved. In addition, we hypothesized that muscle reoxygenation reverses contractile protein dysfunction. In vitro contractility of rat soleus muscle bundles was studied after 30 min of hyperoxia (Po2 approximately 90 kPa), hypoxia (Po2 approximately 5 kPa), hypoxia + 30 microM N(G)-monomethyl-L-arginine (L-NMMA, a nitric oxide synthase inhibitor), hyperoxia + 30 microM L-NMMA, and hypoxia (30 min) + reoxygenation (15 min). One part of the muscle bundle was used for single fiber contractile measurements and the other part for nitrotyrosine detection. In skinned single fibers, maximal Ca2+-activated specific force (Fmax), fraction of strongly attached cross bridges (alphafs), rate constant of force redevelopment (ktr), and myofibrillar Ca2+ sensitivity were determined. Thirty minutes of hypoxia reduced muscle bundle contractility. In the hypoxic group, single fiber Fmax, alphafs, and ktr were significantly reduced compared with hyperoxic, L-NMMA, and reoxygenation groups. Myofibrillar Ca2+ sensitivity was not different between groups. Nitrotyrosine levels were increased in hypoxia compared with all other groups. We concluded that acute hypoxia induces dysfunction of skinned muscle fibers, reflecting contractile protein dysfunction. In addition, our data indicate that reactive nitrogen species play a role in hypoxia-induced contractile protein dysfunction. Reoxygenation of the muscle bundle partially restores bundle contractility but completely reverses contractile protein dysfunction.  相似文献   

12.
Modulation of Tie2 receptor activity by angiopoietin ligands is crucial for angiogenesis, blood vessel maturation, and vascular endothelium integrity. The role of the angiopoietin (Ang) and Tie system in myocardial infarction is not well understood. To investigate the participation of the Ang/Tie in myocardial infarction, adult Sprague-Dawley rats with ligation of the left anterior descending coronary artery to induce myocardial infarction were studied. Ang1, Ang2, Tie1, and Tie2 were measured immediately after ligation of the coronary artery, and at 6 h, 1 and 3 days, and 1, 2, 3 and 4 weeks after ligation by Northern blotting, Western blotting, and immunohistochemical staining. Ang2 mRNA significantly increased from 2 weeks (2.1-fold) to 4 weeks (2.9-fold) after the infarction in the left ventricular free wall. Tie2 mRNA increased significantly from 1 week (2.1-fold) to 4 weeks (3.8-fold) after the infarction. Ang2 protein also significantly increased from 3 days (1.9-fold) to 4 weeks (3-fold) after the infarction in the left ventricular free wall. Tie2 protein increased 2.4-fold at 3 weeks and 2.8-fold at 4 weeks after the infarction. Neither Ang1 nor Tie1 mRNA or protein showed any significant change at any time point after the infarction. The ratio of Ang2/Ang1 mRNA and protein in the study group was higher than that in the control group. Ang2 and Tie2 expression in nonischemic myocardium showed no significant change. Immunohistochemical study also showed increased immunoreactivity of Ang2 and Tie2 at the infarct border. In conclusion, Ang2 and Tie2 expressions significantly increased both spatial and temporal patterns after myocardial infarction in the rat ventricular myocardium, while Ang1 and Tie1 receptor expression did not.  相似文献   

13.
A structural event during the evolution of a myocardial infarction (MI) is left ventricular (LV) remodeling. The mechanisms that contribute to early changes in LV myocardial remodeling in the post-MI period remain poorly understood. Matrix metalloproteinases (MMPs) contribute to tissue remodeling in several disease states. Whether and to what degree MMP activation occurs within the myocardial interstitium after acute MI remains to be determined. Adult pigs (n = 15) were instrumented to measure regional myocardial function and interstitial MMP levels within regions served by the circumflex and left anterior descending arteries. Regional function was measured by sonomicrometry, and interstitial MMP levels were determined by selective microdialysis and zymography as well as by MMP interstitial fluorogenic activity. Measurements were performed at baseline and sequentially for up to 3 h after ligation of the obtuse marginals of the circumflex artery. Regional fractional shortening fell by over 50% in the MI region but remained unchanged in the remote region after coronary occlusion. Release of soluble MMPs, as revealed by zymographic activity of myocardial interstitial samples, increased by 2 h post-MI. The increased zymographic activity after MI was consistent with MMP-9. Myocardial interstitial MMP fluorogenic activity became detectable within the ischemic region as early as 10 min after coronary occlusion and significantly increased after 1 h post-MI. MMP fluorogenic activity remained unchanged from baseline values in the remote region. The present study demonstrated that myocardial MMP activation can occur within the MI region in the absence of reperfusion. These unique results suggest that MMP release and activation occurs within the ischemic myocardial interstitium in the early post-MI period.  相似文献   

14.
目的探讨外周血来源的内皮前体细胞自体移植,对大鼠急性心肌梗死后微血管新生与心功能的影响。方法抽取SD大鼠外周动脉血,应用Ficoll密度梯度离心法获取单个核细胞。应用含有VEGF和bFGF的特定培养基体外培养,得到内皮前体细胞;结扎SD大鼠冠状动脉左前降支,建立急性心肌梗死模型;然后将得到的自体内皮前体细胞植入缺血心肌局部区域。对照组动物注入细胞培养液。结果与对照组比较,细胞移植组大鼠心功能明显改善,心肌收缩力显著优于对照组;梗死心肌微血管新生更为明显。结论急性心肌梗死心肌局部移植外周血来源的自体内皮前体细胞,能够促进血管新生;对局部梗死心肌组织结构有一定的保护作用,并可在不同时点不同程度恢复心肌收缩力,显著改善心功能。  相似文献   

15.
alpha-Adrenergic agonists have been shown to increase the tension developed by myocardial muscle. However, their effects on the maximum velocity of unloaded muscle shortening (Vmax) have not been rigorously examined. In this study, the contractile effects of the alpha-adrenergic agonist phenylephrine were examined in the presence of propranolol in papillary muscles of two species, the dog and the rabbit. In rabbit papillary muscles studied at physiological calcium concentrations (1.25 mM), phenylephrine increased all indices of contractility (Vmax, tension, and maximum rate of tension developed (dT/dt)) starting at 10(-8) M. The percent increase in Vmax (121 +/- 8%) was less than that of tension (188 +/- 20%, p less than 0.05) and dT/dt (262 +/- 35%, p less than 0.01). These findings occurred at both 29 and 35 degrees C and were inhibited by adding 10(-5) M prazosin. Increasing extracellular calcium concentration from 1.25 to 15 mM caused changes in twitch configuration that were significantly different from those of phenylephrine. Calcium increased all indices of contractility more than did phenylephrine. This was particularly true for dT/dt (502 +/- 82 vs. 262 +/- 35% for phenylephrine, p less than 0.01). Nonetheless, the ratio of increase in tension to increase in Vmax under both experimental conditions was similar (the increase in Vmax was 64% of that of tension with phenylephrine and 69% with increased calcium). At 1.25 mM calcium, the increase in contractility caused by phenylephrine was much smaller in dog myocardium as compared with rabbit myocardium. Rather, the effects of phenylephrine on dog myocardium studied at 1.25 mM calcium resembled that of rabbit myocardium studied at 15 mM calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Passive electrical remodeling following myocardial infarction (MI) is well established. These changes can alter electrotonic loading and trigger the remodeling of repolarization currents, a potential mechanism for ventricular fibrillation (VF). However, little is known about the role of passive electrical markers as tools to identify VF susceptibility post-MI. This study investigated electrotonic remodeling in the post-MI ventricle, as measured by myocardial electrical impedance (MEI), in animals prone to and resistant to VF. MI was induced in dogs by a two-stage left anterior descending (LAD) coronary artery ligation. Before infarction, MEI electrodes were placed in remote (left circumflex, LCX) and infarcted (LAD) myocardium. MEI was measured in awake animals 1, 2, 7, and 21 days post-MI. Subsequently, VF susceptibility was tested by a 2-min LCX occlusion during exercise; 12 animals developed VF (susceptible, S) and 12 did not (resistant, R). The healing infarct had lower MEI than the normal myocardium. This difference was stable by day 2 post-MI (287 +/- 32 Omega vs. 425 +/- 62 Omega, P < 0.05). Significant differences were observed between resistant and susceptible animals 7 days post-MI; susceptible dogs had a wider electrotonic gradient between remote and infarcted myocardium (R: 89 +/- 60 Omega vs. S: 180 +/- 37 Omega). This difference increased over time in susceptible animals (252 +/- 53 Omega at 21 days) due to post-MI impedance changes on the remote myocardium. These data suggest that early electrotonic changes post-MI could be used to assess later arrhythmia susceptibility. In addition, passive-electrical changes could be a mechanism driving active-electrical remodeling post-MI, thereby facilitating the induction of arrhythmias.  相似文献   

17.
Following myocardial infarction (MI), contractile dysfunction develops not only in the infarct zone but also in noninfarcted regions of the left ventricle remote from the infarct zone. Inflammatory activation secondary to MI stimulates inducible nitric oxide synthase (iNOS) induction with excess production of nitric oxide. We hypothesized that the anti-inflammatory effects of selective A(2A)-adenosine receptor (A(2A)AR) stimulation would suppress inflammation and preserve cardiac function in the remote zone early after MI. A total of 53 mice underwent 60 min of coronary occlusion followed by 24 h of reperfusion. The A(2A)AR agonist (ATL146e, 2.4 microg/kg) was administered intraperitoneally 1, 3, and 6 h postreperfusion. Because of the 1-h delay in treatment after MI, ATL146e had no effect on infarct size, as demonstrated by contrast-enhanced cardiac MRI (n = 18) performed 24 h post-MI. ATL146e did however preserve global cardiac function at that time by limiting contractile dysfunction in remote regions [left ventricle wall thickening: 51 +/- 4% in treated (n = 9) vs. 29 +/- 3% in nontreated groups (n = 9), P < 0.01]. RT-PCR, immunohistochemistry, and Western blot analysis indicated that iNOS mRNA and protein expression were significantly reduced by ATL146e treatment in both infarcted and noninfarcted zones. Similarly, elevations in plasma nitrate-nitrite after MI were substantially blunted by ATL146e (P < 0.01). Finally, treatment with ATL146e reduced NF-kappaB activation in the myocardium by over 50%, not only in the infarct zone but also in noninfarcted regions (P < 0.05). In conclusion, A(2A)AR stimulation after MI suppresses inflammatory activation and preserves cardiac function, suggesting the potential utility of A(2A)AR agonists against acute heart failure in the immediate post-MI period.  相似文献   

18.
Beraprost sodium, an orally active prostacyclin analogue, has vasoprotective effects such as vasodilation and antiplatelet activities. We investigated the therapeutic potential of beraprost for myocardial ischemia. Immediately after coronary ligation of Sprague-Dawley rats, beraprost (200 microg/kg/day) or saline was subcutaneously administered for 28 days. Four weeks after coronary ligation, administration of beraprost increased capillary density in ischemic myocardium, decreased infarct size, and improved cardiac function in rats with myocardial infarction. Beraprost markedly increased the number of CD34-positive cells and c-kit-positive cells in plasma. Also, four weeks after coronary ligation of chimeric rats with GFP-expressing bone marrow, bone marrow-derived cells were incorporated into the infarcted region and its border zone. Treatment with beraprost increased the number of GFP/von Willebrand factor-double-positive cells in the ischemic myocardium. These results suggest that beraprost has beneficial effects on ischemic myocardium partly by its ability to enhance neovascularization in ischemic myocardium by mobilizing bone marrow cells.  相似文献   

19.
Law  Peter K.  Haider  Kh.  Fang  G.  Jiang  S.  Chua  F.  Lim  Y.T.  Sim  E. 《Molecular and cellular biochemistry》2004,263(1):173-178
Bioengineering the regenerative heart may provide a novel treatment for heart failure. On May 14, 2002, a 55-year-old man suffering from ischemic myocardial infarction received 25 injections carrying 465 million cGMP-produced pure myoblasts into his myocardium after coronary artery bypass grafting. As on August 28, 2002, his EKG was normal and showed no arrhythmia. His ejection fraction increased by 13%. He no longer experienced shortness of breath and angina as he did before the treatment. Three myogenesis mechanisms were elucidated with 17 human/porcine xenografts using cyclosporine as immunosuppressant. Some myoblasts developed to become cardiomyocytes. Others transferred their nuclei into host cardiomyocytes through natural cell fusion. As yet others formed skeletal myofibers with satellite cells. De novo production of contractile filaments augmented the heart contractility. Human myoblasts transduced with VEGF165 gene produced six times more capillaries in porcine myocardium than in placebo. Xenograft rejection was not observed for up to 20 weeks despite cyclosporine discontinuation at 6 weeks. Pros and cons of autografts vs. allografts are compared to guide future development of heart cell therapy. (Mol Cell Biochem 263: 173–178, 2004)  相似文献   

20.
After myocardial infarction, ventricular geometry and function, as well as energy metabolism, change markedly. In nonischemic heart failure, inhibition of xanthine oxidase (XO) improves mechanoenergetic coupling by improving contractile performance relative to a reduced energetic demand. However, the metabolic and contractile effects of XO inhibitors (XOIs) have not been characterized in failing hearts after infarction. After undergoing permanent coronary ligation, mice received a XOI (allopurinol or oxypurinol) or matching placebo in the daily drinking water. Four weeks later, 1H MRI and 31P magnetic resonance spectroscopy (MRS) were used to quantify in vivo functional and metabolic changes in postinfarction remodeled mouse myocardium and the effects of XOIs on that process. End-systolic (ESV) and end-diastolic volumes (EDV) were increased by more than sixfold after infarction, left ventricle (LV) mass doubled (P < 0.005), and the LV ejection fraction (EF) decreased (14 +/- 9%) compared with control hearts (59 +/- 8%, P < 0.005) at 1 mo. The myocardial phosphocreatine (PCr)-to-ATP ratio (PCr/ATP) was also significantly decreased in infarct remodeled hearts (1.4 +/- 0.6) compared with control animals (2.1 +/- 0.5, P < 0.02), in agreement with prior studies in larger animals. The XOIs allopurinol and oxypurinol did not change LV mass but limited the increase in ESV and EDV of infarct hearts by 50%, increased EF (23 +/- 9%, P = 0.01), and normalized cardiac PCr/ATP (2.0 +/- 0.5, P < 0.04). We conclude that XOIs improve ventricular function after infarction and normalize high-energy phosphate ratio in heart failure. Thus XOI therapy offers a new and potentially complementary approach to limit the adverse contractile and metabolic consequences after infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号