首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Physical map of the linear chromosome of Streptomyces griseus.   总被引:4,自引:2,他引:4       下载免费PDF全文
The chromosomal DNA of Streptomyces griseus 2247 (a derivative of strain IFO3237) was digested with several restriction endonucleases and analyzed by pulsed-field gel electrophoresis (PFGE). Digestion with AseI and DraI gave 15 and 9 fragments, respectively, the total sizes of which were 7.8 Mb. All the AseI and DraI fragments were aligned on a linear chromosome map by using linking plasmids and cosmids. PFGE analysis of the intact chromosome also showed a linear DNA band of about 8 Mb. Detailed physical maps of both terminal regions were constructed; they revealed the presence of a 24-kb terminal inverted repeat on each end. PFGE analysis with and without proteinase K treatment suggested that each end of the chromosome carries a protein molecule.  相似文献   

2.
Physical map of the Myxococcus xanthus chromosome.   总被引:22,自引:12,他引:10       下载免费PDF全文
The genome of Myxococcus xanthus, which is 9,454 kbp, is one of the largest bacterial genomes. The organization of the DNA and the distribution of genes encoding social and developmental behaviors were examined by using pulsed field gel electrophoresis. Intact genomic DNA was digested with AseI into 16 restriction fragments, which were separated by contour-clamped homogeneous electric field electrophoresis, purified, and radiolabeled. Each AseI fragment was hybridized to SpeI-digested DNA and to an M. xanthus genomic library contained in yeast artificial chromosomes. Some SpeI restriction fragments and yeast artificial chromosome clones contained AseI sites and hybridized with two different AseI restriction fragments, providing evidence for the juxtaposition of these AseI restriction fragments in the chromosome. The deduced AseI physical map is circular, suggesting that this bacterium contains a single, circular chromosome. Transposable elements shown by transduction to be in or near genes of interest were located on specific AseI restriction fragments by restriction analysis and Southern hybridization. Most AseI restriction fragments contained genes involved in social and developmental behaviors.  相似文献   

3.
A physical map of the chromosome of Streptomyces lividans 66 ZX7 was constructed by ordering the macrorestriction fragments generated from the genomic DNA with the restriction enzymes AseI and DraI. AseI and DraI linking cosmids (i.e., recombinant cosmids including either AseI or DraI sites) were isolated from a gene bank and used as hybridization probes against Southern transfers of pulsed-field gel electrophoresis (PFGE) restriction patterns. The DraI sites were precisely mapped by PFGE analyses of AseI-DraI double digests and hybridization with the AseI junctions. The 16 AseI and 7 DraI fragments were aligned as a single chromosome of about 8,000 kb. The data supported the interpretation that the chromosome is a linear structure. The related strain Streptomyces coelicolor A3(2) M145, recently mapped by H. Kieser, T. Kieser, and D. A. Hopwood (J. Bacteriol. 174:5496-5507, 1992), was compared with S. lividans at the level of the genomic structure by hybridizing the linking cosmids to Southern transfers of PFGE patterns. In spite of little apparent similarity in their restriction patterns, the comparison of the physical maps revealed a common structure with an identical ordering of the cosmid sequences. This conservation of the map order was further confirmed by assigning genetic markers (i.e., cloned genes and DNA elements relevant to the unstable region) to the AseI fragments.  相似文献   

4.
Four restriction endonucleases, AseI (5'-ATTAAT), SpeI (5'-ACTAGT), DraI (5'-TTTAAA), and SnaBI (5'-TACGTA), generated DNA fragments of suitable size distributions for mapping the genome of Rhodobacter sphaeroides by transverse alternating field electrophoresis. AseI produced 17 fragments, ranging in size from 3 to 1,105 kilobases (kb), SpeI yielded 16 fragments (12 to 1,645 kb), DraI yielded at least 25 fragments (6 to 800 kb), and SnaBI generated 10 fragments (12 to 1,225 kb). A total genome size of approximately 4,400 +/- 112 kb was determined by summing the fragment lengths in each of the digests generated by using the different restriction endonucleases. The total genomic DNA consisted of chromosomal DNA (3,960 +/- 112 kb) and the five endogenous plasmids (approximately 450 kb total) whose cognate DNA fragments have been unambiguously identified. A number of genes have been physically mapped to the AseI-generated restriction endonuclease fragments of total genomic DNA by Southern hybridization analysis with either homologous or heterologous specific gene probes or, in the case of several auxotrophic and pigment-biosynthetic mutants apparently generated by Tn5, a Tn5-specific probe. Other genes have been mapped by a comparison with wild-type patterns of the electrophoretic banding patterns of the AseI-digested genomic DNA derived from mutants generated by the insertion of either kanamycin or spectinomycin-streptomycin resistance cartridges. The relative orientations, distance, and location of the pufBALMX, puhA, cycA, and pucBA operons have also been determined, as have been the relative orientations between prkB and hemT and between prkA and the fbc operon.  相似文献   

5.
The shape of the chromosomal DNA of the sulfur-dependent archaebacterium Sulfolobus acidocaldarius was analyzed by the pulsed-field gel electrophoresis(PFGE). S.acidocaldarius DNA digested with Notl showed two DNA bands at around 1.0 Mbp and 2.1 Mbp. Notl-linking clones were isolated from the library of S.acidocaldarius chromosomal DNA. It contained two Notl sites. Both 1.0 and 2.1 Mbp DNA band separated by PFGE were hybridized with the two independent Notl-linking fragment. Each right and left arms of two Notl-linking fragments were hybridized with one of the two DNA bands separated by PFGE. The results indicated that the chromosomal DNA of S.acidocaldarius is circular.  相似文献   

6.
Genomic DNA of the myxobacterium Myxococcus xanthus was digested with the rare cutting restriction endonuclease AseI or SpeI, and the restriction products were separated by pulsed-field gel electrophoresis. Transposons Tn5-132 and Tn5 lac, which contain AseI restriction sites, were used to determine the number of restriction fragments in each band. The size of the genome was determined by adding the molecular sizes of the restriction products. The genomes of strains DK101, MD2, and DZF1 have identical restriction patterns and were estimated to be 9,454 +/- 101 kilobase pairs from the AseI digestions and 9,453 +/- 106 kilobase pairs from the SpeI digestions. DK1622, which was derived from DK101 by treatment with UV light, has suffered a 220- to 222-kilobase-pair deletion that removed an AseI and an SpeI restriction site. The deleted DNA may consist exclusively of Mx alpha-associated sequences.  相似文献   

7.
Of 16 restriction endonucleases known to hydrolyze rare 6- or 8-base recognition sequences that were tested, only SpeI, NotI, AscI, and SfiI generated fragments of chromosomal DNA from Yersinia pestis, the causative agent of bubonic plague, of sufficient length to permit physical analysis by pulsed-field gel electrophoresis (PFGE). Of the individual bands detected after single-dimensional PFGE of these digests, the largest sum was obtained with SpeI (3,575.6 +/- 114.6 kb). Of these 41 bands, 3 were found to contain comigrating fragments, as judged by the results of two-dimensional SpeI-ApaI PFGE; addition of these fragments and the three plasmids of the species yielded a refined estimate of 4,397.9 +/- 134.6 kb for the genome. This size was similar for eight strains of diverse geographical origin that exhibited distinct DNA macrorestriction patterns closely related to their biotypes. The high-frequency chromosomal deletion known to exist in nonpigmented mutants (unable to assimilate Fe3+ at 37 degrees C or store hemin at 26 degrees C) was shown by two-dimensional PFGE analysis with SpeI and ApaI or with SfiI and SpeI to be 92.5 and 106 kb in size, respectively. The endpoints of this deletion were precise, and its size was more than sufficient to encode the eight known peptides reported to be absent in nonpigmented mutants. This deletion had not occurred (but was able to do so) in a rare mutant capable of hemin storage but not iron transport.  相似文献   

8.
Protease negative mutant of Xanthomonas campestris pathovar glycine 8ra (prt-mutant) was constructed by mutagenesis employing artificial transposon Omegon-Km. Transposon delivery was conducted through diparental conjugation using X. campestris pathovar glycine 8ra as recipient and Escherichia coli S17-1 carrying pJFF 3500 plasmid as the donor. The frequency of transconjugation was found 1.9 x 10(-7) per recipient. Enzyme analysis indicated the presence of mutant with lower protease activity than that of the wild-type. Genetic analysis employing pulsed-field gel electrophoresis (PFGE) of the genomic DNA digested with AseI or SpeI restriction endonuclease could significantly differentiate X. campestris pathovar glycine 8ra prt from the wild-type parent. The 9.85 kb pLR omega 6 plasmid was constructed from the genomic DNA of the prt mutant after being digested with KpnI restriction endonuclease and ligated with T4 DNA ligase.  相似文献   

9.
Genomic DNA of Stigmatella aurantiaca DW 4/3.1 was restricted with the rare-cutting endonucleases AseI and SpeI. The restriction pattern derived is composed of 33 AseI and 25 SpeI fragments, whose total size amounts to approximately 9,350 kbp. Genomic fingerprint analysis of chromosomal DNA from several S. aurantiaca isolates further revealed five completely different SpeI and AseI fingerprints and one distinct fingerprint for Stigmatella erecta. In addition, minor variations between the genome sizes of these isolates were observed.  相似文献   

10.
The restriction enzymes AseI (ATTAAT), DraI (TTTAAA), and SspI (AATATT) cut the Streptomyces coelicolor A3(2) chromosome into 17, 8, and 25 fragments separable by pulsed-field gel electrophoresis (PFGE). The sums of their lengths indicated that the chromosome consists of about 8 Mb of DNA, some 75% more than that of Escherichia coli K-12. A physical map of the chromosome was constructed for AseI and DraI, using single and double digests, linking clones, cross-hybridization of restriction fragments, and locations of genetically mapped genes, insertion sequences, prophages, and the integrated SCP1 and SLP1 plasmids on the physical map. The physical map was aligned with the previously established genetic map, revealing that the two long opposite quadrants of the genetic map that are almost devoid of markers (the silent regions at 3 o'clock and 9 o'clock) are indeed physically long rather than being hot spots for genetic exchange. They must therefore contain long stretches of DNA different in function from the remainder of the genome. Consistent with this conclusion are the locations of significant deletions in both of the silent regions. Of these, a 40-kb deletion in the 9 o'clock region accompanied or followed integration of the SCP1 linear plasmid to produce the NF fertility state. PFGE analysis of Streptomyces lividans 66, a close relative of S. coelicolor A3(2), was hampered by the previously described susceptibility of its DNA to degradation during electrophoresis. However, ZX7, a mutant derivative of S. lividans lacking the DNA modification responsible for this degradation, yielded good PFGE preparations. Not more than 7 of the 17 S. coelicolor AseI fragments could be shared by the S. lividans strain.  相似文献   

11.
A macrorestriction map representing the complete physical map of the Rhodobacter sphaeroides 2.4.1 chromosomes has been constructed by ordering the chromosomal DNA fragments from total genomic DNA digested with the restriction endonucleases AseI, SpeI, DraI, and SnaBI. Junction fragments and multiple restriction endonuclease digestions of the chromosomal DNAs derived from wild-type and various mutant strains, in conjunction with Southern hybridization analysis, have been used to order all of the chromosomal DNA fragments. Our results indicate that R. sphaeroides 2.4.1 carries two different circular chromosomes of 3,046 +/- 95 and 914 +/- 17 kilobases (kb). Both chromosome I (3,046 kb) and chromosome II (914 kb) contain rRNA cistrons. It appears that only a single copy of the rRNA genes is contained on chromosome I (rrnA) and that two copies are present on chromosome II (rrnB, rrnC). Additionally, genes for glyceraldehyde 3-phosphate dehydrogenase (gapB) and delta-aminolevulinic acid synthase (hemT) are found on chromosome II. In each instance, there appears to be a second copy of each of these genes on chromosome I, but the extent of the DNA homology is very low. Genes giving rise to enzymes involved in CO2 fixation and linked to the gene encoding the form I enzyme (i.e., the form I region) are on chromosome I, whereas those genes representing the form II region are on chromosome II. The complete physical and partial genetic maps for each chromosome are presented.  相似文献   

12.
A combined physical and genetic map of theCorynebacterium glutamicum ATCC 13032 chromosome was constructed using pulsed-field gel electrophoresis (PFGE) and hybridizations with cloned gene probes. Total genomic DNA was digested with the meganucleasesSwaI (5′-ATTTAAAT-3′),PacI (5′-TTAATTAA-3′), andPmeI (5′-GTTTAAAC-3′) yielding 26, 27, and 23 fragments, respectively. The chromosomal restriction fragments were then separated by PFGE. By summing up the lengths of the fragments generated with each of the three enzymes, a genome size of 3082 +/- 20 kb was determined. To identify adjacentSwaI fragments, a genomic cosmid library ofC. glutamicum was screened for chromosomal inserts containingSwaI sites. Southern blots of the PFGE gels were hybridized with these linking clones to connect theSwaI fragments in their natural order. By this method, about 90% of the genome could be ordered into three contigs. Two of the remaining gaps were closed by cross-hybridization of blottedSwaI digests using as probesPacI andPmeI fragments isolated from PFGE gels. The last gap in the chromosomal map was closed by hybridization experiments using partialSwaI digestions, thereby proving the circularity of the chromosome. By hybridization of gene probes toSwaI fragments separated by PFGE about 30 genes, including rRNA operons, IS element and transposon insertions were localized on the physical map.  相似文献   

13.
Using pulsed-field gel electrophoresis (PFGE) analysis, the amplifiable units of DNA (AUD) loci AUD6 and AUD90 of Streptomyces ambofaciens DSM40697 could be mapped in the wild-type genome within two adjacent AseI restriction fragments estimated to be about 75 and 850 kb. In addition, the genetic instability and formation of very large deletions were strictly correlated. Their sizes were estimated to range from 250 to more than 2,000 kb. These deletions affected the DNA region overlapping both amplifiable loci. PFGE also allowed us to localize the amplified DNA sequences and to establish their structure: amplification takes place at the AUD locus as a tandem array of the wild-type AUD sequence.  相似文献   

14.
The chromosomal DNA of four strains of Gardnerella vaginaliswere digested with rare cutting restriction enzymes and analyzedby pulsed-field gel electrophoresis (PFGE). The four strainsstudied were two clinical isolates (GVP 004 & GVP 007) andtwo American Type Culture Collection strains (ATCC 14018 &ATCC 14019). The restriction enzyme SfiI generated two DNA fragmentsof about 0.6 Mb and 1.1 Mb in all four strains giving a G. vaginalisgenome size of about 1.7 Mb. A similar genome size was calculatedutilizing two more GC-rich sequence specific restriction endonucleases,NotI and AscI. When digested with AscI, the chromosomal DNAof all four strains gave rise to 11 to 12 DNA fragments rangingbetween 0.01 Mb to 0.43 Mb. DNA from the two clinical isolateswere digested by NotI (yielding 7 to 9 fragments), while theDNA from the two ATCC strains were resistant to NotI digestion.In contrast to the clinical isolates, DNA from the two ATCCstrains gave an identical profile for all restriction endonucleasestested. From double digestion experiments, the two SfiI sitescould be localized on two AscI fragments. From these PFGE studies,it is concluded that the G. vaginalis genome is a circular DNAthat ranges between 1.67 Mb and 1.72 Mb in size.  相似文献   

15.
M A Walter  D W Cox 《Genomics》1989,5(1):157-159
The scarcity of single-copy probes creates difficulty in the generation of large-scale physical maps of mammalian gene families. A simple method of two-dimensional DNA electrophoresis (2D-DE) has been developed to overcome this problem. DNA (2 micrograms) is digested with a rare-cutting restriction endonuclease and size separated by pulsed-field gel electrophoresis (PFGE). The DNA, still contained within the lane of the PFGE gel, is digested with a second frequent-cutting restriction enzyme and is subjected to an electrical field perpendicular to that of the PFGE. 2D-DE allows the simultaneous mapping, to large restriction fragments, of all the genes detected by a particular probe. The human immunoglobulin variable region was used as an example for this procedure. Two VH5 genes, on 8- and 9-kb EcoRI fragments, were mapped to 200- and 65-kb SfiI fragments, respectively, by 2D-DE. This technique will be particularly useful in the generation of physical maps of complex human gene families and of repeat families.  相似文献   

16.
Mycobacterium chelonae and Mycobacterium terrae were reported to be frequently present in the environment of the Mycobacterium bovis BCG trial area in south India. Six isolates of M. chelonae and four isolates of M. terrae obtained from different sources in this area were analyzed by pulsed-field gel electrophoresis (PFGE) to examine large-restriction-fragment (LRF) polymorphism using the chromosomal DNA digested with DraI and XbaI restriction enzymes. With the exception of one isolate of M. terrae, DNA from all other isolates could be digested with DraI and XbaI and resulted in separable fragments. Visual comparison of the LRFs showed a unique pattern for each of the isolates tested. A computer-assisted dendrogram of the percent similarity demonstrated a high degree of genetic diversity in this group of isolates. This study demonstrates that species of nontuberculous mycobacteria, particularly M. chelonae and M. terrae, can be successfully typed by their LRF pattern using PFGE, which does not require species-specific DNA probes.  相似文献   

17.
Analysis of the entire Agrobacterium tumefaciens C58 genome by pulsed-field gel electrophoresis (PFGE) reveals four replicons: two large molecules of 3,000 and 2,100 kb, the 450-kb cryptic plasmid, and the 200-kb Ti plasmid. Digestion by PacI or SwaI generated 12 or 14 fragments, respectively. The two megabase-sized replicons, used as probes, hybridize with different restriction fragments, showing that these replicons are two independent genetic entities. A 16S rRNA probe and genes encoding functions essential to the metabolism of the organism were found to hybridize with both replicons, suggesting their chromosomal nature. In PFGE, megabase-sized circular DNA does not enter the gel. The 2.1-Mb chromosome always generated an intense band, while the 3-Mb band was barely visible. After linearization of the DNA by X-irradiation, the intensity of the 3-Mb band increased while that of the 2.1-Mb remained constant. This suggests that the 3-Mb chromosome is circular and that the 2.1-Mb chromosome is linear. To confirm this hypothesis, genomic DNA, trapped in an agarose plug, was first submitted to PFGE to remove any linear DNA present. The plug was then recovered, and the remaining DNA was digested with either PacI or SwaI and then separated by PFGE. The fragments corresponding to the small chromosome were found to be absent, while those corresponding to the circular replicon remained, further proof of the linear nature of the 2.1-Mb chromosome.  相似文献   

18.
Xanthomonas campestris is an important plant pathogenic bacterium which causes severe diseases in a wide variety of plant species. We have generated a macrorestriction map of the X. campestris (axonopodis) pv. glycines chromosome employing pulsed-field gel electrophoresis (PFGE). Restriction endonucleases PacI (5'-TTAATTAA), PmeI (5'-GTTTAAAC) and SwaI (5'-ATTTAAAT) digested the chromosomal DNA into three, five, and five fragments, respectively. In addition, intron-encoded restriction endonuclease I-CeuI was employed to locate the position of the 23S rRNA genes (rrlA and rrlB). All of the generated restriction fragments were aligned along the chromosome using multiple restriction enzyme digestion and two-dimensional PFGE (2-D PFGE) in conjunction with Southern hybridization analysis. This physical map construction has revealed a single circular chromosome with a size of approximately 5 Mb. Two rRNA genes were localized on the chromosome map. Several genes involved in pathogenesis (xpsD, opsX, and pat) as well as genes involved in the biosynthesis of xanthan gum (xanAB, rfbCDAB) were also localized.  相似文献   

19.
The cleavage patterns of 23 rare-cutting restriction endonucleases (rcREs) on high molecular weight DNA, isolated from leaves of Arabidopsis thaliana (Arabidopsis), have been analysed using pulsed field gel electrophoresis (PFGE). The DNA digested with rcREs can be used for restriction fragment length polymorphism (RFLP) analysis. We show that RFLPs are more readily identified in restriction fragments that require resolution by PFGE than in smaller restriction fragments. Taking advantage of the low dispersed repetitive DNA content of the Arabidopsis genome, whole yeast artificial chromosomes (YACs) were used as probes to PFGE resolved genomic DNA. This enabled whole YAC clones to be used as RFLP markers and long range restriction maps to be constructed. These techniques should enhance the analysis of regions of the genome of Arabidopsis (and other organisms with low levels of dispersed repetitive DNA) that are the subject of chromosome walking strategies to isolate particular loci.  相似文献   

20.
Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percentage of chromosomal DNA entering the gel. The degree of separation in pulsed field gel (PFG) depends on the size of DNA as well as various conditions of electrophoresis such as electric field strength, time of electrophoresis, switch time, and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that subchromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single-strand interruptions results in artifactual decrease in molecular weight of linear DNA making accurate determination of the number of double-strand breaks difficult. Although breakage of nicked subchromosomal fragments is field strength independent, some high-molecular-weight subchromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号