首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
T J Chiou  D R Bush 《Plant physiology》1996,110(2):511-520
Several plant genes have been cloned that encode members of the sugar transporter subgroup of the major facilitator superfamily of transporters. Here we report the cloning, expression, and membrane localization of one of these porters found in sugar beet (Beta vulgaris L.). This clone, cDNA-1, codes for a protein with 490 amino acids and an estimated molecular mass of 54 kD. The predicted membrane topology and sequence homology suggest that cDNA-1 is a member of the sugar transporter family. RNA gel blot analysis revealed that this putative sugar transporter is expressed in all vegetative tissues and expression increases with development in leaves. DNA gel blot analysis indicated that multiple gene copies exist for this putative sugar transporter in the sugar beet genome. Antibodies directed against small peptides representing the N- and C-terminal domains of the cDNA1 protein identified a 40-kD polypeptide in microsomes isolated from cDNA-1-transformed yeast (Saccharomyces cerevisiae). Moreover, the same protein was identified in sugar beet and transgenic tobacco (Nicotaina tobacum L.) membrane fractions. Detailed analysis of the transporter's distribution across linear sucrose gradients and flotation centrifugations showed that it co-migrates with tonoplast membrane markers. We conclude that this carrier is located on the tonoplast membrane and that it may mediate sugar partitioning between the vacuole and cytoplasmic compartments.  相似文献   

3.
4.
Aspartic acid can be covalently linked to yeast aspartyl-tRNA synthetase and to other proteins, in the absence of tRNA, under conditions where the synthetase activates the amino acid into aspartyl-adenylate, i.e., in the presence of ATP and MgCl2. The linkage between aspartic acid and the protein is acid and alkali resistant; thus it is likely a peptide-like amide bond formed between the activated carboxylate group of aspartic acid and the primary amine function of the side chain of lysine residues.  相似文献   

5.
The reaction of fluorescamine with primary amino groups of tRNAs was investigated. The reagent was attached under mild conditions to the 3'-end of tRNAPhe-C-C-A(3'NH) from yeast and to the minor nucleoside x in E. coli tRNAArg, tRNALys, tRNAMet, tRNAIle and tRNAPhe. The primary aliphatic amino groups of these tRNAs react specifically so that the fluorescamine dye is not attached to the amino groups of the nucleobases. E. coli tRNA species modified on the minor nucleoside X47 can all be aminoacylated. An involvement of the minor modified nucleoside X47 in the tRNA: synthetase interaction is detected. Native tRNALys-C-C-A from E. coli can be phenylalanylated by phenylalanyl-tRNA synthetase from yeast, whereas this is not the case for fluorescamine treated tRNALys-C-C-A(XF47). Pre-tRNAPhe-C-C-A(XF47) forms a ternary complex with the elongation factor Tu:GTP from E. coli, binds enzymatically to the ribosomal A-site and is active in poly U dependent poly Phe synthesis. Fluorescamine-labelled E. coli tRNAs provide new substrates for the study of protein biosynthesis by spectroscopic methods.  相似文献   

6.
AIMS: Isolates of Candida valida, Rhodotorula glutinis and Trichosporon asahii from the rhizosphere of sugar beet in Egypt were examined for their ability to colonize roots, to promote plant growth and to protect sugar beet from Rhizoctonia solani AG-2-2 diseases, under glasshouse conditions. METHODS AND RESULTS: Root colonization abilities of the three yeast species were tested using the root colonization plate assay and the sand-tube method. In the root colonization plate assay, C. valida and T. asahii colonized 95% of roots after 6 days, whilst Rhod. glutinis colonized 90% of roots after 8 days. Root-colonization abilities of the three yeast species tested by the sand-tube method showed that roots and soils attached to roots of sugar beet seedlings were colonized to different degrees. Population densities showed that the three yeast species were found at all depths of the rhizosphere soil adhering to taproots up to 10 cm, but population densities were significantly (P < 0.05) greater in the first 4 cm of the root system compared with other root depths. The three yeast species, applied individually or in combination, significantly (P < 0.05) promoted plant growth and reduced damping off, crown and root rots of sugar beet in glasshouse trials. The combination of the three yeasts (which were not inhibitory to each other) resulted in significantly (P < 0.05) better biocontrol of diseases and plant growth promotion than plants exposed to individual species. CONCLUSIONS: Isolates of C. valida, Rhod. glutinis and T. asahii were capable of colonizing sugar beet roots, promoting growth of sugar beet and protecting the seedlings and mature plants from R. solani diseases. This is the first successful attempt to use yeasts as biocontrol agents against R. solani which causes root diseases. SIGNIFICANCE AND IMPACT OF THE STUDY: Yeasts were shown to provide significant protection to sugar beet roots against R. solani, a serious soil-borne root pathogen. Yeasts also have the potential to be used as biological fertilizers.  相似文献   

7.
Active-site peptides of acetyl transferase, condensing enzyme and acyl carrier protein in the neighborhood of the prosthetic group, 4'-phosphopantetheine, of Cephalosporium caerulens fatty acid synthetase were investigated. The enzyme was reacted with [14C]acetyl-CoA or [14C]iodoacetamide. 14C-Labeled enzyme was digested with pepsin, trypsin or both. 14C-Labeled peptides were isolated by several purification procedures. The amino acid sequence of the active site of condensing enzyme was determined to be Tyr-Gln-Val-Glu-Ser-Cys-Pro-Ile-Leu-Glu-Gly-Lys and that of acetyl transferase was Phe-Ser-Gly-Ala-Thr-Gly-His-Ser-Gln-Gly. The amino acid composition around the 4'-phosphopantetheine-carrying serine was determined to be Asx2, Thr, Ser, Glx3, Gly2, Ala, Ile, Leu3, and Lys. When these active-site peptides were compared with those of Saccharomyces cerevisiae synthetase, a high degree of homology was observed in the active-site peptides of the acetyl transferase and acyl carrier protein domains. However, that of the condensing enzyme domain gave lower homology. These findings may support the assumption that the low reactivity of cerulenin with C. caerulens synthetase is a consequence of the structure of the condensing enzyme domain.  相似文献   

8.
Pyrocatechol (PC), 10-2M, was applied to the foliage of mature plants of sugar beet (Beta vulgaris L.). Its effect on the activity of nitrate reductase, transaminase, invertase, phosphatases, sucrose synthetase, sucrose phosphate synthetase, and UDPG-pyrophosphorylase were determined 7, 14, and 21 days after treatment. Significant reductions in the activity of nitrate reductase, transaminase, invertase, and phosphatases (including phenyl phosphatase, glucose-1-, glucose-6-, fructose-6-phosphatase, and adenosine triphosphatase) in the treated plants occurred. On the other hand, activities of the enzymes of sucrose biosynthesis, uridine, diphosphate glucose pyrophosphorylase (UDPG-pyrophosphorylase), sucrose synthetase, and sucrose phosphate synthetase were significantly stimulated by the application of pyrocatechol. The results suggest that the growth inhibition following the application of PC to sugar beet plants may stem in part from an amino acid stress resulting from a PC-induced decrement in nitrate reductase and transaminase activity. Its application also creates an enzymatic condition favorable for sucrose biosynthesis and storage.  相似文献   

9.
10.
J Zhao  C C Williams    R L Last 《The Plant cell》1998,10(3):359-370
The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated.  相似文献   

11.
The identification of morpho-physiological traits related to drought tolerance and high yield potential is a challenge when selecting sugar beet genotypes with greater tolerance to water stress. In this paper, root morphological parameters, antioxidant systems, leaf relative water content (RWC) and H+-ATPase activity as key morpho-physiological traits involved in drought tolerance/susceptibility of sugar beet were studied. Genotypes showing a different drought tolerance index (DTI) but a similar yield potential, under moderate (?0.6 Mpa) and severe (?1.2 MPa) water stress, were selected and their morpho-physiological traits were investigated. The results showed a wide genetic variation in morpho-physiological parameters which demonstrated the different adaptive strategies under moderate and severe drought conditions in sugar beet. In particular, an efficient antioxidant system and redox signalling made some sugar beet genotypes more tolerant to drought stress. The alternative strategy of other genotypes was the reduction of root tissue density, which produced a less dense root system improving the axial hydraulic conductivity. These results could be considered as interesting challenge for a better understanding of the drought tolerance mechanisms in sugar beet.  相似文献   

12.
Manure pellets produced from processed swine faeces can be used as carrier material for the biocontrol fungus Trichoderma harzianum. The antagonist can grow and sporulate on the processed manure powder as the sole source of carbon and nutrients. The incorporation of conidia in pellets of the processed manure was shown to be feasible on a laboratory scale. Survival of the fungus in the pellets during storage was satisfactory. The population dynamics of T. harzianum were studied using a benomyl-resistance marker after introduction of conidia into soil. The antagonist could colonize and spread through a number of non-sterile soils and was able to establish a stable population over a period exceeding 125 days. Under sterile conditions, the propagation of T. harzianum in soil was much greater than under non-sterile conditions. The incorporation of antagonist conidia in pellets was found to be essential for the successful colonization of non-sterile soil. In growth chamber experiments, application of T. harzianum via processed manure pellets reduced damping-off of sugar beet seedlings caused by Rhizoctonia solani in artificially and naturally infested soil. In artificially infested soil, T. harzianum reduced the population of R. solani and protected beet seedlings from damping-off 3 weeks after introduction. The application of T. harzianum to naturally infested soil increased the number of healthy beet seedlings more than two-fold.  相似文献   

13.
Both the synthesis of lipopolysaccharide O-antigen and the synthesis of peptidoglycan in Salmonella typhimurium proceed via membrane-bound glycosylated lipid intermediates. The first enzyme of each pathway transfers a sugar phosphate from a nucleotide sugar to the glycosyl carrier lipid (P-GCL). Each enzyme catalyzes an exchange reaction between the reaction product urine monophosphate, and the nucleotide sugar substrate. Several strains of S. typhimurium defective in lipopolysaccharide synthesis accumulate glycosylated lipid intermediates under appropriate conditions. In addition, strains lysogenic for phage P22 synthesize a glucose derivative of the carrier lipid. These strains were used to demonstrate the P/GCL requirement of the exchange reaction catalyzed by galactose-diphosphoglycosyl carrier lipid (GCL-PP-Gal) synthetase, the first enzyme of O-antigen synthesis. Enzyme activity is greatly reduced when glycosylated P-GCL accumulates on the cytoplasmic membrane. The exchange reaction catalyzed by the first enzyme of peptidoglycan synthesis is unaffected by the accumulation of O-antigen fragments on the carrier lipid and may interact with a different pool of P-GCL within the membrane. GCL-PP-Gal synthetase activity cannot be detected in the membranes of two rfa mutants that synthesize incomplete lipopolysaccharide core. Either the synthesis of GCL-PP-Gal synthetase or the stable integration of the enzyme into the membrane structure may be disrupted in the rfa mutants. Peptidoglycan synthesis is unaffected by the mutations affecting the core glycosyltransferases.  相似文献   

14.
A new method for determination of first-order elimination constants for dipeptides is presented. The peptides are hydrolysed by plasma enzymes into amino acids, and ortho-phthaldialdehyde (OPA) is used to react with free primary amino groups. The concentration of free amino groups can, thus, be followed using simple spectrophotometry. A mathematical model for the concentration of free primary amino groups with time is presented through which the elimination constant, and thus the half life, can be determined by curve fitting. The method is applied to inhibitors of angiotensin-converting enzyme derived from the primary structure of milk proteins. The results show that these dipeptides have in vitro half lives ranging from 4.3-64 min, when incubated with 50% rat plasma. This explains why these casokinins in vivo only cause a very moderate and short-lasting inhibition. The model for calculation of elimination constant is limited to dipeptides that do not contain a C-terminal proline. The derivatization method can be applied to longer peptides as a crude indicator of peptide hydrolysis, but does not allow calculation of their elimination constants per se.  相似文献   

15.
A novel selection approach is presented to screen phage display peptide libraries against sets of receptors that share specificity for the same ligand. This strategy was applied to the discovery of glycomimetic peptides. Through these screens, a number of peptide clones were discovered that bind the lectins used in the screen, in a sugar competitive manner. In addition, the majority of the selected peptides demonstrate sugar type mimicry consistent with lectin specificity. Docking studies were conducted to establish whether the mimetic peptides bind to the lectin ConA at the sugar binding site or to a nearby, alternative site shown to bind to YPY-containing peptides previously discovered from single-target screens. Of the three cyclic peptides subjected to computational docking, CNTPLTSRC had the highest predicted affinity and CSRILTAAC demonstrated specificity for the sugar binding site comparable to the natural ligand itself.  相似文献   

16.
Two biochars were produced from anaerobically digested and undigested sugar beet tailings through slow-pyrolysis at 600 °C. The digested sugar beet tailing biochar (DSTC) and raw sugar beet tailing biochar (STC) yields were around 45.5% and 36.3% of initial dry weight, respectively. Compared to STC, DSTC had similar pH and surface functional groups, but higher surface area, and its surface was less negatively charged. SEM-EDS and XRD analyses showed that colloidal and nano-sized periclase (MgO) was presented on the surface of DSTC. Laboratory adsorption experiments were conducted to assess the phosphate removal ability of the two biochars, an activated carbon (AC), and three Fe-modified biochar/AC adsorbents. The DSTC showed the highest phosphate removal ability with a removal rate around 73%. Our results suggest that anaerobically digested sugar beet tailings can be used as feedstock materials to produce high quality biochars, which could be used as adsorbents to reclaim phosphate.  相似文献   

17.
A new method for peptide analysis and purification is described, based on isoelectric focusing in immobilized pH gradients. On the analytical scale, the peptide zones can now be revealed by an stain for primary and secondary amino group (e.g. ninydrin, fluorescamine, dansyl chloride) since the buffering species, unlike conventional carrier ampholytes, contain only carboxyl and tertiary amino groups. For preparative purposes, conditions have been described to remove most contaminants (e.g. unreacted monomers, non-cross-linked, short polyacrylamide chains) from the gel matrix before the electrophoretic run. However, ca. 2% of the gel dry mass is still present as extractable material. The focused peptides can be recovered in higly yields (ca. 90%) with a fairly high degree of purity (75%), the contaminants being mostly components eluted from the polyacrylamide gel.  相似文献   

18.
为探讨H+-焦磷酸酶编码基因对甜菜磷吸收和抗性的影响,实现优良基因在甜菜基因工程中的利用,研究在甜菜中超表达拟南芥液泡膜H+-焦磷酸酶编码基因AVP1,对转基因甜菜分析其耐低磷、耐盐性和抗旱性。结果显示,AVP1基因在甜菜植株的叶片和块根中表达,且在逆境胁迫下增强表达量响应胁迫;低磷处理条件下,转基因甜菜与野生型甜菜相比具有更高的含磷量,可提高甜菜对磷的吸收利用效率;干旱、盐胁迫处理条件下,AVP1基因在转基因甜菜中显著上升,在盐胁迫或干旱处理条件下,转基因植株的生长受抑程度相对较轻。随着盐和干旱胁迫的加剧,转基因植株体内MDA含量与野生型植株相比较低而脯氨酸含量显著增加,AVP1基因可通过减轻逆境对甜菜细胞膜的损伤及提高甜菜细胞的渗透调节能力,进而增强甜菜对高盐和干旱胁迫的抗性。  相似文献   

19.
Unnatural amino acids carrying reactive groups that can be selectively activated under non-invasive biologically benign conditions are of interest in protein engineering as biological tools for the analysis of protein-protein and protein-nucleic acids interactions. The double ring system phenylalanine analogues benzofuranylalanine and benzotriazolylalanine were synthesized, and their photolability was tested by UV irradiation at 254, 320, and 365 nm. Although both showed photo reactivity, benzofuranylalanine appeared as the most promising compound because this amino acid was activated by UVA (long wavelength) irradiation. These amino acids were also tested for in vitro charging of tRNA(Phe) and for protein mutagenesis via the phenylalanyl-tRNA synthetase variant alphaA294G that is able to facilitate in vivo protein synthesis using a range of para-substituted phenylalanine analogues. The results demonstrate that benzofuranylalanine, but not benzotriazolylalanine, is a substrate for phenylalanine tRNA synthetase alphaA294G, and matrix-assisted laser desorption ionization time-of-flight analysis showed it to be incorporated into a model protein with high efficiency. The in vivo incorporation into a target protein of a bicyclic phenylalanine analogue, as described here, demonstrates the applicability of phenylalanine tRNA synthetase variants in expanding the scope of protein engineering.  相似文献   

20.
Horse cytochrome c (cyt c) and two large, overlapping cyanogen bromide-cleaved fragments (1-80 and 66-104), together encompassing the entire length of the polypeptide chain, were examined for their abilities to stimulate into antibody production individual secondary B lymphocytes primed against the intact protein. T cell help was provided against the carrier protein, hemocyanin, to which cyt c and its peptides were conjugated by using glutaraldehyde. All the B cells activated by both of the fragments elicited antibodies that reacted with intact cyt c in enzyme-linked immunosorbent assay, whereas only a fraction of the antibodies elicited by the intact protein reacted with the peptides. However, in general, antibodies reactive with the polypeptide fragments, whether elicited by the intact protein or by the fragments, could not be effectively inhibited from binding plate-bound cyt c in enzyme-linked immunosorbent assay in the presence of soluble native cyt c. This indicates that these antibodies are specific for denatured forms of cyt c that apparently arise during the chemical coupling of cyt c to carrier molecules for immunization and/or during emulsification of the immunogen in adjuvant. Whereas, at most, 5% of the secondary B cells specific for native cyt c could be activated by the 1-80 fragment, even fewer were activated by the 66-104 fragment. Therefore, it is unlikely that smaller peptides which fail to assume native conformation would be effective. Antibodies elicited in vivo in a primary response to the 1-80 fragment also failed to bind native cyt c. These results suggest that linear peptides intended to mimic epitopes on globular proteins, and which have not been engineered to adopt native conformation, will not be very effective either as primary or as secondary vaccines for B cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号