首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2-oxoglutarate (2OG)/Fe2 +-dependent oxygenases (2OG oxygenases) are a large family of proteins that share a similar overall three-dimensional structure and catalyze a diverse array of oxidation reactions. The Jumonji C (JmjC)-domain-containing proteins represent an important subclass of the 2OG oxygenase family that typically catalyze protein hydroxylation; however, recently, other reactions have been identified, such as tRNA modification. The Escherichia coli gene, ycfD, was predicted to be a JmjC-domain-containing protein of unknown function based on primary sequence. Recently, YcfD was determined to act as a ribosomal oxygenase, hydroxylating an arginine residue on the 50S ribosomal protein L-16 (RL-16). We have determined the crystal structure of YcfD at 2.7 Å resolution, revealing that YcfD is structurally similar to known JmjC proteins and possesses the characteristic double-stranded β-helix fold or cupin domain. Separate from the cupin domain, an additional globular module termed α-helical arm mediates dimerization of YcfD. We further have shown that 2OG binds to YcfD using isothermal titration calorimetry and identified key binding residues using mutagenesis that, together with the iron location and structural similarity with other cupin family members, allowed identification of the active site. Structural homology to ribosomal assembly proteins combined with GST (glutathione S-transferase)-YcfD pull-down of a ribosomal protein and docking of RL-16 to the YcfD active site support the role of YcfD in regulation of bacterial ribosome assembly. Furthermore, overexpression of YcfD is shown to inhibit cell growth signifying a toxic effect on ribosome assembly.  相似文献   

2.
The cupin superfamily of proteins is among the most functionally diverse of any described to date. It was named on the basis of the conserved β-barrel fold (‘cupa’ is the Latin term for a small barrel), and comprises both enzymatic and non-enzymatic members, which have either one or two cupin domains. Within the conserved tertiary structure, the variety of biochemical function is provided by minor variation of the residues in the active site and the identity of the bound metal ion. This review discusses the advantages of this particular scaffold and provides an evolutionary analysis of 18 different subclasses within the cupin superfamily.  相似文献   

3.
Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a six-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active-site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative fingerprint motif for ADOs, or DUF1637 family members, is proposed. In ADOs, the conserved glutamate residue in cupin motif 1 is replaced by either glycine or valine. Both ADOs and CDOs appear to represent unique clades within the cupin superfamily.  相似文献   

4.
PF10014 is a novel family of 2‐oxyglutarate‐Fe2+‐dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the β‐strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site. Proteins 2014; 82:164–170. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
6.
Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a “hypothetical” protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 Å resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable of acting on d-lyxose and d-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.  相似文献   

7.
Cupins: the most functionally diverse protein superfamily?   总被引:10,自引:0,他引:10  
  相似文献   

8.
On the basis of significant sequence similarity, we have identified JmjC domains in more than 100 eukaryotic and bacterial sequences. These include human hairless, mutated in individuals with alopecia universalis, retinoblastoma-binding protein 2 and several putative chromatin-associated proteins. JmjC domains are predicted to be metalloenzymes that adopt the cupin fold, and are candidates for enzymes that regulate chromatin remodelling.  相似文献   

9.

Background

The members of cupin superfamily exhibit large variations in their sequences, functions, organization of domains, quaternary associations and the nature of bound metal ion, despite having a conserved β-barrel structural scaffold. Here, an attempt has been made to understand structure-function relationships among the members of this diverse superfamily and identify the principles governing functional diversity. The cupin superfamily also contains proteins for which the structures are available through world-wide structural genomics initiatives but characterized as “hypothetical”. We have explored the feasibility of obtaining clues to functions of such proteins by means of comparative analysis with cupins of known structure and function.

Methodology/Principal Findings

A 3-D structure-based phylogenetic approach was undertaken. Interestingly, a dendrogram generated solely on the basis of structural dissimilarity measure at the level of domain folds was found to cluster functionally similar members. This clustering also reflects an independent evolution of the two domains in bicupins. Close examination of structural superposition of members across various functional clusters reveals structural variations in regions that not only form the active site pocket but are also involved in interaction with another domain in the same polypeptide or in the oligomer.

Conclusions/Significance

Structure-based phylogeny of cupins can influence identification of functions of proteins of yet unknown function with cupin fold. This approach can be extended to other proteins with a common fold that show high evolutionary divergence. This approach is expected to have an influence on the function annotation in structural genomics initiatives.  相似文献   

10.
Comparative analysis of numerous protein structures that have become available in the past few years, combined with genome comparison, has yielded new insights into the evolution of enzymes and their functions. In addition to the well-known diversification of substrate specificities, enzymes with several widespread catalytic folds, particularly the TIM barrel, the RRM-like domain and the double-stranded beta-helix (cupin) domain, have been extensively explored in 'reaction space', resulting in the evolution of numerous, diverse catalytic activities supported by the same structural scaffold. Common protein folds differ widely in the diversity of catalyzed reactions. The biochemical plasticity of a fold seems to hinge on the presence of a generic, symmetrical substrate-binding pocket as opposed to highly specialized binding sites.  相似文献   

11.
YhaK is a protein of unknown function found in low abundance in the cytosol of Escherichia coli. DNA array studies have revealed that YhaK is strongly up-regulated by nitroso-glutathione (GSNO) and also displays a 12-fold increase in expression during biofilm growth of E. coli 83972 and VR50 in human urine. We have determined the YhaK crystal structure and demonstrated that in vitro YhaK is a good marker for monitoring oxidative stresses in E. coli. The YhaK protein structure shows a bicupin fold where the two cupin domains are crosslinked with one intramolecular disulfide bond (Cys10 to Cys204). We found that the third cysteine in YhaK, Cys122, is oxidized to a sulfenic acid. Two chloride ions are found in the structure, one close to the reactive Cys122, and the other on a hydrophobic surface close to a symmetry-related molecule. There are major structural differences at the N-terminus of YhaK compared with similar structures that also display the bicupin fold (YhhW and hPirin). YhaK showed no quercetinase and peroxidase activity. However, reduced YhaK was very sensitive to reactive oxygen species (ROS). The complete, functional E. coli glutaredoxin or thioredoxin systems protected YhaK from oxidation. E. coli thioredoxin reductase and NADPH produced ROS and caused oxidation and oligomerization of reduced YhaK. Taken together, we propose that YhaK is the first of a new sub-class of bicupins that lack the canonical cupin metal-binding residues of pirins and may be involved in chloride binding and/or sensing of oxidative stress in enterobacteria.  相似文献   

12.
Common structural motifs, such as the cupin domains, are found in enzymes performing different biochemical functions while retaining a similar active site configuration and structural scaffold. The soil bacterium Bacillus subtilis has 20 cupin genes (0.5% of the total genome) with up to 14% of its genes in the form of doublets, thus making it an attractive system for studying the effects of gene duplication. There are four bicupins in B. subtilis encoded by the genes yvrK, yoaN, yxaG, and ywfC. The gene products of yvrK and yoaN function as oxalate decarboxylases with a manganese ion at the active site(s), whereas YwfC is a bacitracin synthetase. Here we present the crystal structure of YxaG, a novel iron-containing quercetin 2,3-dioxygenase with one active site in each cupin domain. Yxag is a dimer, both in solution and in the crystal. The crystal structure shows that the coordination geometry of the Fe ion is different in the two active sites of YxaG. Replacement of the iron at the active site with other metal ions suggests modulation of enzymatic activity in accordance with the Irving-Williams observation on the stability of metal ion complexes. This observation, along with a comparison with the crystal structure of YvrK determined recently, has allowed for a detailed structure-function analysis of the active site, providing clues to the diversification of function in the bicupin family of proteins.  相似文献   

13.
Pyrococcus furiosus phosphoglucose isomerase (PfPGI) is a metal-containing enzyme that catalyses the interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P). The recent structure of PfPGI has confirmed the hypothesis that the enzyme belongs to the cupin superfamily and identified the position of the active site. This fold is distinct from the alphabetaalpha sandwich fold commonly seen in phosphoglucose isomerases (PGIs) that are found in bacteria, eukaryotes and some archaea. Whilst the mechanism of the latter family is thought to proceed through a cis-enediol intermediate, analysis of the structure of PfPGI in the presence of inhibitors has led to the suggestion that the mechanism of this enzyme involves the metal-dependent direct transfer of a hydride between C1 and C2 atoms of the substrate. To gain further insight in the reaction mechanism of PfPGI, the structures of the free enzyme and the complexes with the inhibitor, 5-phospho-d-arabinonate (5PAA) in the presence and absence of metal have been determined. Comparison of these structures with those of equivalent complexes of the eukaryotic PGIs reveals similarities at the active site in the disposition of possible catalytic residues. These include the presence of a glutamic acid residue, Glu97 in PfPGI, which occupies the same position relative to the inhibitor as that of the glutamate that is thought to function as the catalytic base in the eukaryal-type PGIs. These similarities suggest that aspects of the catalytic mechanisms of these two structurally unrelated PGIs may be similar and based on an enediol intermediate.  相似文献   

14.
Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen.  相似文献   

15.
Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteine sulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5-A resolution, and these results confirm the canonical cupin beta-sandwich fold and the rare cysteinyltyrosine intramolecular cross-link (between Cys(93) and Tyr(157)) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His(86), His(88), and His(140)) and a water molecule. Attempts to acquire a structure with bound ligand using either cocrystallization or soaking crystals with cysteine revealed the formation of a mixed disulfide involving Cys(164) near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploration of the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.  相似文献   

16.
Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC) catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa), we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (Sa)EctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of enzyme activity and iron content of these mutants give important clues for understanding the architecture of the active site positioned within the core of the EctC cupin barrel.  相似文献   

17.
18.
Laura Silvennoinen 《FEBS letters》2009,583(17):2917-2921
RemF is a polyketide cyclase involved in the biosynthesis of the aromatic pentacyclic metabolite resistomycin in Streptomyces resistomycificus. The enzyme is a member of a structurally hitherto uncharacterized class of polyketide cyclases. The crystal structure of RemF was determined by SAD and refined to 1.2 Å resolution. The enzyme subunit shows a β-sandwich structure with a topology characteristic for the cupin fold. RemF contains a metal binding site located at the bottom of the predominantly hydrophobic active site cavity. A zinc ion is coordinated to four histidine side chains, and two water molecules in octahedral ligand sphere geometry, highly unusual for zinc binding sites in proteins.  相似文献   

19.
Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King’s B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.  相似文献   

20.
In the Euryarchaeota species Pyrococcus furiosus and Thermococcus litoralis, phosphoglucose isomerase (PGI) activity is catalyzed by an enzyme unrelated to the well known family of PGI enzymes found in prokaryotes, eukaryotes, and some archaea. We have determined the crystal structure of PGI from Pyrococcus furiosus in native form and in complex with two active site ligands, 5-phosphoarabinonate and gluconate 6-phosphate. In these structures, the metal ion, which in vivo is presumed to be Fe2+, is located in the core of the cupin fold and is immediately adjacent to the C1-C2 region of the ligands, suggesting that Fe2+ is involved in catalysis rather than serving a structural role. The active site contains a glutamate residue that contacts the substrate, but, because it is also coordinated to the metal ion, it is highly unlikely to mediate proton transfer in a cis-enediol mechanism. Consequently, we propose a hydride shift mechanism of catalysis. In this mechanism, Fe2+ is responsible for proton transfer between O1 and O2, and the hydride shift between C1 and C2 is favored by a markedly hydrophobic environment in the active site. The absence of any obvious enzymatic machinery for catalyzing ring opening of the sugar substrates suggests that pyrococcal PGI has a preference for straight chain substrates and that metabolism in extreme thermophiles may use sugars in both ring and straight chain forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号