首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.  相似文献   

2.
A comparative study of Indonesian parietal bones from Sangiran, Sambungmachan 1 and Ngandong has been undertaken. This study comprises a morphological and metrical analysis of the individual parietal bones, followed by consideration of the biparietal vault. The results are compared with other hominids from earlier and later periods. These hominids were found in China (Sinanthropus II, III, X, XI and XII), in Africa (ER 3733, OH 9, Ternifine, Broken Hill and Saldanha) and in Europe (Arago XLVII, Petralona, Swanscombe, Steinheim, Le Lazaret, La Chaise (Abri Suard) and Cova Negra). These European Middle Pleistocene hominids are attributed toHomo erectus by various authors (Lumley 1973;Hemmer 1972;Spitery 1982;Lumley andFournier 1982) and to an early Neanderthal group, pre-Neanderthal orHomo sapiens sensu lato (Neanderthals+modern humans) by others (Stringer 1980, 1981, 1983, 1984,Wolpoff 1980,Holloway 1982). The discussion about the classification of those hominids is not closed, but it is not the subject of this paper and not our intention to solve it here. So we have chosen to call this fossil material ‘Anteneandertals’ (Lumley 1973). It appears that some morphological metrical features allow us to separate the Sangiran and Ngandong samples. Sambungmachan 1, whose chronological age is not well established, appears to be closer to Ngandong men.  相似文献   

3.
Hominid fossils from Ngandong and Sambungmacan, Central Java, Indonesia, are considered to be the most anatomically derived and youngest representatives of Homo erectus. Nondestructive gamma-ray spectrometric dating of three of these Homo erectus skulls showed that all samples underwent uranium leaching. Nevertheless, we could establish minimum age estimates of around 40ka, with an upper age limit of around 60 to 70ka. This means that the Homo erectus of Java very likely survived the Toba eruption and may have been contemporaneous with the earliest Homo sapiens in Southeast Asia and Australasia.  相似文献   

4.
There are now eleven manidublar pieces from the Lower and Middle Pleistocene of Java, all but one being from the Sangiran site. All of these have been assigned toHomo erectus by most workers, while others have suggested as many as four different hominoid taxa. Sangiran 21 (Mandible E), Sangiran 22 (Mandible F), and Sangiran 37 (Mandible G) are described here fully for the first time. Sangiran 21, 22, and 27 all come from the Upper Pucangan Formation and date approximately 1.2 Myr. The new mandibles are morphologically compatible with theH. erectus, crania from Java.  相似文献   

5.
A newHomo erectus cranium was found on May 18, 1993 by Budi, a local farmer, at Sangiran. It dates from the Middle Pucangan Formation approximately 1.6–1.8 mya. The braincase is essentially complete and as is most of the face. The vault has the typicalH. erectus gable shape. There is a clear sagittal ridge beginning below the middle of the frontal squama and running to mid-parietal. Parasagittal ridges are rounded angulations halfway up the parietals, and coincide with poorly marked temporal lines. In all measurements, this skull is longer and consistently narrower than Trinil. It is chronologically and morphologically similar to the famousH. erectus skull from east Africa, KNMER-3733. Although existing much older, this new specimen is what one would expect a female counterpart to Sangiran 17 to look like.  相似文献   

6.
ClassifyingHomo erectus into subspecies can be based on either temporal or geographical differences, but there is no accepted system for using both. This can be done with subspecies names consisting of two elements — a prefix ofneo, meso, orpaleo to indicate grade, followed by a geographical term ofeuropus, africus, sinicus, orindicus to indicate line. Thus Rhodesian isHomo erectus neoafricus, Ngandong isHomo erectus neoindicus, Peking isHomo erectus mesosinicus, ER 3733 isHomo erectus paleoafricus, etc.  相似文献   

7.
The taxonomic status of Homo erectus sensu lato has been a source of debate since the early 1980s, when a series of publications suggested that the early African fossils may represent a separate species, H. ergaster. To gain further resolution regarding this debate, 3D geometric morphometric data were used to quantify overall shape variation in the cranial vault within H. erectus using a new metric, the sum of squared pairwise Procrustes distances (SSD). Bootstrapping methods were used to compare the H. erectus SSD to a broad range of human and nonhuman primate samples in order to ascertain whether variation in H. erectus most clearly resembles that seen in one or more species. The reference taxa included relevant phylogenetic, ecological, and temporal analogs including humans, apes, and both extant and extinct papionin monkeys. The mean cranial shapes of different temporogeographic subsets of H. erectus fossils were then tested for significance using exact randomization tests and compared to the distances between regional groups of modern humans and subspecies/species of the ape and papionin monkey taxa. To gauge the influence of sexual dimorphism on levels of variation, comparisons were also made between the mean cranial shapes of single-sex samples for the reference taxa. Results indicate that variation in H. erectus is most comparable to single species of papionin monkeys and the genus Pan, which included two species. However, H. erectus encompasses a limited range of variation given its extensive geographic and temporal range, leading to the conclusion that only one species should be recognized. In addition, there are significant differences between the African/Georgian and Asian H. erectus samples, but not between H. ergaster (Georgia+Africa, excluding OH 9 and Daka) and H. erectus sensu stricto. This finding is in line with expectations for intraspecific variation in a long-lived species with a wide, but probably discontinuous, geographic distribution.  相似文献   

8.
In 2004, a new hominin species, Homo floresiensis, was described from Late Pleistocene cave deposits at Liang Bua, Flores. H. floresiensis was remarkable for its small body-size, endocranial volume in the chimpanzee range, limb proportions and skeletal robusticity similar to Pliocene Australopithecus, and a skeletal morphology with a distinctive combination of symplesiomorphic, derived, and unique traits. Critics of H. floresiensis as a novel species have argued that the Pleistocene skeletons from Liang Bua either fall within the range of living Australomelanesians, exhibit the attributes of growth disorders found in modern humans, or a combination of both. Here we describe the morphology of the LB1, LB2, and LB6 mandibles and mandibular teeth from Liang Bua. Morphological and metrical comparisons of the mandibles demonstrate that they share a distinctive suite of traits that place them outside both the H. sapiens and H. erectus ranges of variation. While having the derived molar size of later Homo, the symphyseal, corpus, ramus, and premolar morphologies share similarities with both Australopithecus and early Homo. When the mandibles are considered with the existing evidence for cranial and postcranial anatomy, limb proportions, and the functional anatomy of the wrist and shoulder, they are in many respects closer to African early Homo or Australopithecus than to later Homo. Taken together, this evidence suggests that the ancestors of H. floresiensis left Africa before the evolution of H. erectus, as defined by the Dmanisi and East African evidence.  相似文献   

9.
The teeth of the Homo erectus child (Garba IV) recovered from Melka Kunture Ethiopia and dated to 1.5 Ma are characterized by generalized enamel dysplasia, reduced enamel radio-opacity, and severe attrition. This combination of features is found in a large group of hereditary, generalized enamel dysplasias known as amelogenesis imperfecta (AI). SEM studies carried out on epoxy replicas of teeth from the Garba IV child, confirmed that the defects noted were developmental and not due to diagenesis. The enamel prism arrangement is abnormal and there are deep vertical furrows lacking enamel on both buccal and lingual surfaces of all molars. The lesions differ from those characteristic of linear enamel hypoplasia that form discrete horizontal lesions or pits within otherwise normal enamel. We propose that the Garba IV child is the earliest example of AI and provides a link between palaeoanthropology and molecular biology in investigations of the evolutionary history of genetic disorders.  相似文献   

10.
The hominid fossil and Paleolithic archaeology records from the Korean Peninsula are extensive, but relatively little is known about the Korean human evolutionary record outside this region. The Korean paleoanthropological record is reviewed here in light of major research issues, including the hominid fossil record, relative and chronometric dating, lithic analysis, hominid subsistence, and the presence of bone tools, art and symbolism. Some of the major conclusions drawn from this review include: (1) hominid fossils have been found in nine separate sites on the Korean Peninsula; (2) possible Homo erectus fossils are present in North Korea; (3) Ryonggok Cave, in North Korea, has exposed the remains of at least five archaic Homo sapiens individuals; (4) a possible burial of an anatomically modern Homo sapiens child, discovered in Hungsu Cave in South Korea, has been tentatively dated to roughly 40,000 years ago; (5) handaxes and cleavers have been found at a number of sites near Chongokni and they appear to date to at least 100,000 years ago; and (6) taphonomic studies are necessary for addressing issues related to determining the nature of hominid-carnivore interaction over similar resources (e.g. carcasses and shelter); and the presence/absence of Early Paleolithic bone tools, art, and symbolism in Korea.  相似文献   

11.
This paper presents a genomic comparison between 20 sequenced BACs (or fragments of BACs) from Tetraodon nigroviridis and the human genome. A total of 199 fish genes were identified by informatics resources, together with their putative human orthologues. Comparisons of the localizations in both species led to the identification of 32 syntenic regions and a minimum of 131 rearrangements in these regions that occurred during independent evolution of these species. This made it possible to estimate the rate of genomic rearrangements that occurred per million years (and per megabase). This rate is comparable to that obtained by comparison of the Fugu rubripes shotgun sequence data to human data but is significantly higher that those obtained by comparing the human genome to mammalian genomes. Overall, it suggests that genomic evolution by rearrangement is not uniform within the vertebrate group.Sequence data for the genomic BAC clones have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession numbers BX629360, BX629354, BX629355, BX629356, BX629357, BX629358, BX629359, and BX629360.  相似文献   

12.
13.
In 1994 a hominid frontal bone fragment was found in the river floor of the Brangkal River, the Sangiran area, Central Java. The original stratigraphic level is not known at present stage of the research. But it is possible that the bone was derived from the Grenzbank zone of the Bapang Formation (Lower/Middle Pleistocene). Morphological features of the bone, such as a thick and continuous supraorbital torus, a wide and flat supratoral plane, and a flat and strongly inclined frontal squame suggest that the bone is assigned to JavaneseHomo erectus, especially to the Sangiran and Trinil group of it.  相似文献   

14.
Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n = 127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M1 and M2 is small. In contrast, Aterian H. sapiens root surface areas peak at M2. Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens.  相似文献   

15.
In March 1994, during excavation work for the construction of a motorway, a fragmented calvaria was discovered in the “Campo Grande” area near Ceprano, a town in southern Latium (Central Italy) about 55 miles from Rome. After reconstruction, the remain was recognized as belonging to aHomo erectus; it has been estimated that it goes back to the lowest middle Pleistocene. The calvaria exhibits two pathologic findings. The first is a congenital malformation of the sphenoidal sinus consisting in a deep, wide recess penetrating into the left greater wing as far as the sphenotemporal suture. The lesion was examined with the help of a cast whose features were compared with those described in some early and recent cases reported in the literature. The second finding is a healed, depressed fracture of the right brow ridge. The cause and mechanism of this lesion are discussed, and a mechanical approach has been used to provide information pertinent to the specific reason for the injury. The possibility that the hominid was butted by a large animal appears to be the most likely cause of the fracture.  相似文献   

16.
Previous work by several researchers has suggested that the cranial sample from Zhoukoudian possesses a unique metric pattern relative to the African and Asian specimens assigned to Homo erectus. The current study readdresses this issue with an expanded fossil sample and a larger and more comprehensive set of cranial measurements. To test the patterns present in the assemblage, canonical variates analysis was performed using a covariance matrix generated from the Howells data set. From this, interindividual Mahalanobis distances were computed for the fossils. Random expectation statistics were then used to measure statistical significance of the Mahalanobis distances. The results show that the Zhoukoudian hominids exhibit a unique metric pattern not shared by the African and Indonesian crania sampled. In these tests the Hexian calvaria resembled the African and Indonesian specimens and differed significantly from the craniometric pattern seen in the Zhoukoudian fossils. The Zhoukoudian specimens are characterized by a wide midvault and relatively narrow occipital and frontal bones, while the African and Indonesian crania (including Hexian) have relatively broad frontal and occipital dimensions compared to their midvaults. These results do not suggest that a multiple-species scenario is necessary to encompass the variation present in the sample. Based on the current evidence it is more probable that this variation reflects polytypism influenced by environmental adaptation and/or genetic drift.  相似文献   

17.
18.
Previous studies of daily energy expenditure (DEE) in hominin fossils have estimated locomotor costs using a formula that was based on six species, all 18 kg or less in mass, including no primates, and that has a number of other problems when applied in an ecological context. It is well established that the energetic cost of human walking is lower than that of representative mammals, particularly for individuals with long lower limbs. The current study reevaluates the daily energy expenditures of a variety of hominin species using more appropriate approaches to estimating locomotor costs. To estimate DEE for primates, I relied on published data on body mass, day range, and the percentage of time spent in various activities. Based on those data, I calculated a value for nonlocomotor DEE. I then used a variant of a method that I have suggested elsewhere to calculate the daily cost due to locomotion (DEEL) and summed the two to calculate total DEE. The more up-to-date methods for calculating the cost of travel result in lower estimates of this aspect of the energy budget than seen in previous studies. Values obtained here for DEE in various representatives of Australopithecus are lower than reported previously by around 200 kcal/day. Taking into account the greater economy of human walking, particularly the effect of the longer lower limbs found in many later Homo species, also results in lowered estimates of DEE. Elongation of the lower limbs in H. erectus reduced relative travel costs nearly 50% in comparison to A.L. 288-1 (A. afarensis). The present method for calculating DEE indicates that female H. erectus DEE was 84% greater than that of female Australopithecus; this disparity is even larger than that suggested by previous workers.  相似文献   

19.
20.
The holotype of Homo floresiensis, diminutive hominins with tiny brains living until 12,000 years ago on the island of Flores, is a partial skeleton (LB1) that includes a partial clavicle (LB1/5) and a nearly complete right humerus (LB1/50). Although the humerus appears fairly modern in most regards, it is remarkable in displaying only 110 degrees of humeral torsion, well below modern human average values. Assuming a modern human shoulder configuration, such a low degree of humeral torsion would result in a lateral set to the elbow. Such an elbow joint would function more nearly in a frontal than in a sagittal plane, and this is certainly not what anyone would have predicted for a tool-making Pleistocene hominin. We argue that Homo floresiensis probably did not have a modern human shoulder configuration: the clavicle was relatively short, and we suggest that the scapula was more protracted, resulting in a glenoid fossa that faced anteriorly rather than laterally. A posteriorly directed humeral head was therefore appropriate for maintaining a normally functioning elbow joint. Similar morphology in the Homo erectus Nariokotome boy (KNM-WT 15000) suggests that this shoulder configuration may represent a transitional stage in pectoral girdle evolution in the human lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号