首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During apoptosis, cytochrome c is released into the cytosol as the outer membrane of mitochondria becomes permeable, and this acts to trigger caspase activation. The consequences of this release for mitochondrial metabolism are unclear. Using single-cell analysis, we found that when caspase activity is inhibited, mitochondrial outer membrane permeabilization causes a rapid depolarization of mitochondrial transmembrane potential, which recovers to original levels over the next 30-60 min and is then maintained. After outer membrane permeabilization, mitochondria can use cytoplasmic cytochrome c to maintain mitochondrial transmembrane potential and ATP production. Furthermore, both cytochrome c release and apoptosis proceed normally in cells in which mitochondria have been uncoupled. These studies demonstrate that cytochrome c release does not affect the integrity of the mitochondrial inner membrane and that, in the absence of caspase activation, mitochondrial functions can be maintained after the release of cytochrome c.  相似文献   

2.
《Free radical research》2013,47(8):1029-1043
Abstract

HLE, a human hepatocellular carcinoma cell line was transiently transfected with normal human MnSOD and MnSOD without a mitochondrial targeting signal (MTS). Mitochondrial reactive oxygen species (ROS), lipid peroxidation and apoptosis were examined as a function of time following 18.8 Gy X-ray irradiation. Our results showed that the level of mitochondrial ROS increased and reached a maximum level 2 hours after X-ray irradiation. Authentic MnSOD, but not MnSOD lacking MTS, protected against mitochondrial ROS, lipid peroxidation and apoptosis. In addition, the levels of mitochondrial ROS were consistently found to always correlate with the levels of authentic MnSOD in mitochondria. These results suggest that only when MnSOD is located in mitochondria is it efficient in protecting against cellular injuries by X-ray irradiation and that mitochondria are the critical sites of X-ray-induced cellular oxidative injuries.  相似文献   

3.
The generation of Reactive Oxygen Species (ROS) as by-products in mitochondria Electron Transport Chain (ETC) has long been admitted as the cost of aerobic energy metabolism with oxidative damages as consequence. The purpose of this methodological review is to present some of the most widespread methods of ROS generation and to underline the limitations as well as some problems, identified with some experiments as examples, in the interpretation of such results. There is now no doubt that besides their pejorative role, ROS are involved in a variety of cellular processes for the continuous adaptation of the cell to its environment. Because ROS metabolism is a complex area (low production, instability of species, efficient antioxidant defense system, several places of production…) bias, variances and limitations in ROS measurements must be recognized in order to avoid artefactual conclusions, and especially to improve our understanding of physiological and pathophysiological mechanisms of such phenomenon.  相似文献   

4.
Between 15% and 20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis.  相似文献   

5.
In this study, we found that production of both reactive oxygen (ROS) and nitrogen (RNS) species is a very early event related to treatment with hyperosmotic concentration of sorbitol. The production of nitric oxide (NO) was paralleled by the increase of the mRNA and protein level of the inducible form of the nitric oxide synthase (iNOS). ROS and RNS enhancement, process concomitant to the failure of mitochondrial trans-membrane potential (ΔΨ), was necessary for the induction of apoptosis as demonstrated by the protection against sorbitol-mediated toxicity observed after treatment with ROS scavengers or NOS inhibitors. The synergistic action of ROS and RNS was finally demonstrated by pre-treatment with rosmarinic acid that, by powerfully buffering both these species, prevents impairment of ΔΨ and cell death. Overall results suggest that the occurrence of apoptosis upon sorbitol treatment is an event mediated by oxidative/nitrosative stress rather than a canonical hyperosmotic shock.  相似文献   

6.
In this study, we found that production of both reactive oxygen (ROS) and nitrogen (RNS) species is a very early event related to treatment with hyperosmotic concentration of sorbitol. The production of nitric oxide (NO) was paralleled by the increase of the mRNA and protein level of the inducible form of the nitric oxide synthase (iNOS). ROS and RNS enhancement, process concomitant to the failure of mitochondrial trans-membrane potential (ΔΨ), was necessary for the induction of apoptosis as demonstrated by the protection against sorbitol-mediated toxicity observed after treatment with ROS scavengers or NOS inhibitors. The synergistic action of ROS and RNS was finally demonstrated by pre-treatment with rosmarinic acid that, by powerfully buffering both these species, prevents impairment of ΔΨ and cell death. Overall results suggest that the occurrence of apoptosis upon sorbitol treatment is an event mediated by oxidative/nitrosative stress rather than a canonical hyperosmotic shock.  相似文献   

7.
Demethyl fruticulin A (SCO‐1) is a compound found in Salvia corrugata leaves. SCO‐1 was reported to induce anoikis in cell lines via the membrane scavenging receptor CD36. However, experiments performed with cells lacking CD36 showed that SCO‐1 was able to induce apoptosis also via alternative pathways. To gain some insight into the biological processes elicited by this compound, we undertook an unbiased genomic approach. Upon exposure of glioblastoma tumor initiating cells (GBM TICs) to SCO‐1 for 24 h, we observed a deregulation of the genes belonging to the glutathione metabolism pathway and of those belonging to the biological processes related to the response to stress and to chemical stimulus. On this basis, we hypothesized that the SCO‐1 killing effect could result from the induction of reactive oxygen species (ROS) in the mitochondria. This hypothesis was confirmed by flow cytometry using MitoSOX, a mitochondria‐selective fluorescent reporter of ROS, and by the ability of N‐acetyl cysteine (NAC) to inhibit apoptosis when co‐administered with SOC‐1 to the GBM TICs. We further show that NAC also protects other cell types such as HeLa, MG‐63, and COS‐7 from apoptosis. We therefore propose that ROS production is the major molecular mechanism responsible for the pro‐apoptotic effect induced by SCO‐1. Consequently, SCO‐1 may have a potential therapeutic value, which deserves further investigation in animal models. J. Cell. Biochem. 111: 1149–1159, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real‐time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage‐independent clathrin‐mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N‐acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.  相似文献   

9.
Methotrexate (MTX), a folate antagonist, was developed for the treatment of malignancies, and is currently used in rheumatoid arthritis (RA) and other chronic inflammatory disorders. It has been proven in short-term and long-term prospective studies that low doses of MTX (0.75 mg/Kg/week) are effective in controlling the inflammatory manifestations of RA. Low-concentrations of MTX achieve apoptosis and clonal deletion of activated peripheral T cells. One of the mechanisms of the anti-inflammatory and immunosuppressive effects may be the production of reactive oxygen species (ROS). However, the drug resistance of MTX in malignancies remains poorly understood. Ornithine decarboxylase (ODC) plays an important role in diverse biological functions, including cell development, differentiation, transformation, growth and apoptosis. In our previous studies, ODC overexpression was shown to prevent TNFα-induced apoptosis via reducing ROS. Here, we also investigated one mechanism of MTX-induced apoptosis and of drug resistance as to the anti-apoptotic effects of ODC during MTX treatment. We found MTX could induce caspase-dependent apoptosis and promote ROS generation together with disrupting the mitochondrial membrane potential (ΔΨm) of HL-60 and Jurkat T cells. Putrescine and ROS scavengers could reduce MTX-induced apoptosis, which leads to the loss of ΔΨm, through reducing intracellular ROS. Overexpression of ODC in parental cells had the same effects as putrescine and the ROS scavengers. Moreover, ODC overexpression prevented the decline of Bcl-2 that maintains ΔΨm, the cytochrome c release and activations of caspase 9 and 3 following MTX treatment. The results demonstrate that MTX-induced apoptosis is ROS-dependent and occurs along a mitochondria-mediated pathway. Overexpressed ODC cells are resistant to MTX-induced apoptosis by reducing intracellular ROS production.  相似文献   

10.
Lon protease is a multifunction protein and operates in protein quality control and stress response pathways in mitochondria. Human Lon is upregulated under oxidative and hypoxic stresses that represent the stress phenotypes of cancer. However, little literature undertakes comprehensive and detailed investigations on the tumorigenic role of Lon. Overexpression of Lon promotes cell proliferation, apoptotic resistance to stresses, and transformation. Furthermore, Lon overexpression induces the production of mitochondrial reactive oxygen species (ROS) that result from Lon-mediated upregulation of NDUFS8, a mitochondrial Fe-S protein in complex I of electron transport chain. Increased level of mitochondrial ROS promotes cell proliferation, cell survival, cell migration, and epithelial–mesenchymal transition through mitogen-activated protein kinase (MAPK) and Ras-ERK activation. Overall, the present report for the first time demonstrates the role of Lon overexpression in tumorigenesis. Lon overexpression gives an apoptotic resistance to stresses and induces mitochondrial ROS production through Complex I as signaling molecules to activate Ras and MAPK signaling, giving the survival advantages and adaptation to cancer cells. Finally, in silico and immunohistochemistry analysis showed that Lon is overexpressed specifically in various types of cancer tissue including oral cancer.  相似文献   

11.
The capacity of yeast cells to produce reactive oxygen species (ROS), both as a response to manipulation of mitochondrial functions and to growth conditions, was estimated and compared with the viability of the cells. The chronological ageing of yeast cells (growth to late-stationary phase) was accompanied by increased ROS accumulation and a significantly higher loss of viability in the mutants with impaired mitochondrial functions than in the parental strain. Under these conditions, the ectopic expression of mammalian Bcl-x(L), which is an anti-apoptotic protein, allowed cells to survive longer in stationary phase. The protective effect of Bcl-x(L) was more prominent in respiratory-competent cells that contained defects in mitochondrial ADP/ATP translocation, suggesting a model for Bcl-x(L) regulation of chronological ageing at the mitochondria. Yeast can also be triggered into apoptosis-like cell death, at conditions leading to the depletion of the intramitochondrial ATP pool, as a consequence of the parallel inhibition of mitochondrial respiration and ADP/ATP translocation. If respiratory-deficient (rho(0)) cells were used, no correlation between the numbers of ROS-producing cells and the viability loss in the population was observed, indicating that ROS production may be an accompanying event. The protective effect of Bcl-x(L) against death of these cells suggests a mitochondrial mechanism which is different from the antioxidant activity of Bcl-x(L).  相似文献   

12.
Role of reactive oxygen species (ROS) in apoptosis induction   总被引:28,自引:0,他引:28  
Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.  相似文献   

13.
Apoptosis is an active process that is regulated by different signalling pathways. One of the more important organelles involved in apoptosis regulation is the mitochondrion. Electron chain transport disruption increases free radical production leading to multiple conductance channel opening, release of cytochrome c and caspase activation. This death pathway can be blocked by anti-apoptotic members of the Bcl-2 protein family that might shift redox potential to a more reduced state, preventing free radical-mediated damage. 6-Hydroxydopamine (6-OHDA) has been widely used to generate Parkinson's disease-like models. It is able to generate free radicals and to induce catecholaminergic cell death. In this paper we have used the human neuroblastoma cell line SH-SY5Y overexpressing Bcl-x(L) as a model to gain insights into the mechanisms through which Bcl-x(L) blocks 6-OHDA-induced cell death and to identify the molecular targets for this action. Herein, we present evidence supporting that the Bcl-x(L)-anti-apoptotic signal pathway seems to prevent mitochondrial multiple conductance channel opening, cytochrome c release and caspase-3 like activity following 6-OHDA treatment in the human neuroblastoma cell line SH-SY5Y.  相似文献   

14.
Although genetic factors are a well-known cause of colorectal cancer, environmental factors contribute more to its development. Despite advances in the fields of surgery, radiotherapy and chemotherapy, the cure rates for colon cancer have not substantially improved over the past few decades. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), the principal pungent ingredient of hot chili pepper, has exhibited an anti-tumor effect in many cell types. However, the mechanisms responsible for the anti-tumor effect of capsaicin are not yet completely understood. In this study, we investigated whether capsaicin induces apoptosis in colon cancer cell lines. Capsaicin decreased cell viability in a dose-dependent manner in Colo320DM and LoVo cells. In addition, capsaicin produced cell morphology changes and DNA fragmentation, decreased the DNA contents, and induced phosphatidylserine translocation, which is a hallmark of apoptotic cell death. We showed that capsaicin-induced apoptosis is associated with an increase in ROS generation and a disruption of the mitochondrial transmenbrane potential. A possible mechanism of capsaicin-induced apoptosis is the activation of caspase 3, a major apoptosis-executing enzyme. Treatment with capsaicin induced a dramatic increase in caspase 3 activity, as assessed by the cleavage of Ac-DEVD-AMC, a fluorogenic substrate. In conclusion, our results clearly showed that capsaicin induced apoptosis in colon cancer cells. Although the actual mechanisms of capsaicin-induced apoptosis remain uncertain, it may be a beneficial agent for colon cancer treatment and chemoprevention.  相似文献   

15.
Studies in a variety of cell types have suggested that cancer chemotherapy drugs induce tumor cell apoptosis in part by inducing formation of reactive oxygen species (ROS). Using human B lymphoma cells as the targets, we have found that apoptosis can be induced in the absence of any detectable oxidative stress. Apoptosis was induced with the chemotherapy drugs VP-16 and cisplatin. To determine whether oxidants are formed as part of the drug-induced apoptotic process, intracellular markers of oxidative stress were examined. These included measurement of (1) protein carbonyl groups by Western blot immunoassay, (2) protein methionine sulfoxide residues by amino acid analysis, (3) protein sulfhydryl oxidation by Western blot immunoassay, (4) F2-isoprostanes by GC/MS, and (5) intracellular ROS production using the oxidant-sensitive dyes DCFDA and dihydrorhodamine 123. Apoptosis was quantified using fluorescence microscopy to assess nuclear morphology. The results show that VP-16 and cisplatin induce extensive apoptosis in the absence of any detectable protein or lipid oxidation, measured in both the cytosolic and mitochondrial compartments of the cell. In contrast, H2O2, which kills the cells by nonapoptotic pathways, caused increases in both protein and lipid oxidation. Three different antioxidant compounds (N-acetyl cysteine, Tempol, and MnTBAP) failed to inhibit VP-16-induced apoptosis, while inhibiting H2O2-induced cell death. Only N-acetyl cysteine inhibited cisplatin-induced cell death and this is attributed to its known ability to react directly with and inactivate cisplatin before it enters the cell. The results demonstrate that, at least in B lymphoma cells, chemotherapy-induced apoptosis occurs using a mechanism that does not involve oxidants.  相似文献   

16.
Apoptosis and necrosis are distinct forms of cell death that occur in response to various agents. We studied the action of N-Acetyl-D-sphingosine (C2-ceramide) or N-hexanoyl-D-sphyngosine (C6-ceramide) in human hepatoma HepG2 cell line. The cells were treated in vitro for 1–24 h. Cell toxicity was evaluated by MTT assay. DNA content was estimated by gel electrophoresis and flow cytometry. Measurement of mitochondrial respiration, analysis of cytochrome c release and caspase-3 activation were assessed in order to determine if either of these events in the induction of apoptosis and/or necrosis was predominant. We have demonstrated that C2 and C6-ceramide were cytotoxic in a time and dose-dependent manner. After 24 h of treatment with 100 M of C2 and C6 the morphology (May-Giemsa staining) of treated cells displayed an apoptotic phenotype in C6-treated cells, confirmed by a high (sub-G1 peak > 20%) proportion by flow cytometry while a necrotic morphology was observed after C2-ceramide treatment, confirmed by DNA smearing in DNA electrophoresis. After C6-ceramide incubation, the respiratory chain was functional only slightly inhibited (20%), there was production of ATP, cytochrome c release without ROS production, activation of caspase-3 and induction of apoptosis. On the contrary, C2-ceramide inhibit the respiratory chain more intensely (80%) increased significantly ROS production, which resulted in an arrest of ATP production, no cytochrome c release and absence of caspase-3 activation. Finally after complete exhaustion of intracellular ATP, mitochondrial explosion induce necrotic cell death. In conclusion, evidence suggest that mitochondrial respiratory chain function is essential for controlling the decision of the cell to enter a apoptotic or necrosis process.  相似文献   

17.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

18.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

19.
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines—U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma.  相似文献   

20.
This perspective article highlights the growing evidence placing mitochondria and mitochondrial function at the center of cancer as an age‐related disease. The discussion starts from the mitochondrial free radical hypothesis that predicts the involvement of endogenous mitochondrial reactive oxygen species (ROS) in cancer development and summarizes studies demonstrating the impact of the modulation of ROS levels on cancer development and metastasis. Cancer is fundamentally a complex interplay of cell growth, division, metastasis and death‐ processes connected to mitochondria through energy metabolism. Based on this evidence, therapeutics focused on mitochondrial function and mitochondrial ROS production are an attractive approach to modulating the progression of metastatic cancer and the general improvement of human health span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号