首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions.
Methods and Results:  A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis .
Conclusions:  The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions.
Significance and impact of the study:  This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.  相似文献   

2.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

3.
A method for isolating active nisin-producing strains of mesophilic lactococci was developed. Overall, 55 strains of mesophilic lactic acid bacteria were isolated from fresh cow's milk obtained from milk farms in various regions throughout Russia; of them, 36 displayed nisin-synthesizing activity. The three most active strains were studied according to morphological, cultural, physiological, and biochemical characteristics and identified as Lactococcus lactis subsp. lactis. The species attribution of the strains studied was confirmed by the similarity of the nucleotide sequences of the 16S rRNA gene. The nucleotide sequences of the 16S rRNA genes were deposited with the GenBank under accession numbers DQ255951-DQ255954. The distinctions between these strains in physiological and biochemical characteristics and the ranges of their bactericide action on the microorganisms capable of developing in agricultural materials and food products were determined. The isolated strains displayed considerably wider ranges of action, which differed from the nisin-producing strain MGU and the commercial nisin preparation (Nisaplin), used as a biological preserving agent.  相似文献   

4.
A method for isolating active nisin-producing strains of mesophilic lactococci was developed. Overall, 55 strains of mesophilic lactic acid bacteria were isolated from fresh cow’s milk obtained from milk farms in various regions throughout Russia; of them, 36 displayed nisin-synthesizing activity. The three most active strains were studied according to morphological, cultural, physiological, and biochemical characteristics and identified as Lactococcus lactis subsp. lactis. The species attribution of the strains studied was confirmed by the similarity of the nucleotide sequences of the 16S rRNA gene. The nucleotide sequences of the 16S rRNA genes were deposited with the GenBank under accession numbers DQ255951–DQ255954. The distinctions between these strains in physiological and biochemical characteristics and the ranges of their bactericide action on the microorganisms capable of developing in agricultural materials and food products were determined. The isolated strains displayed considerably wider ranges of action, which differed from the nisin-producing strain MGU and the commercial nisin preparation (Nisaplin), used as a biological preserving agent.  相似文献   

5.
Abstract The kinetic analysis of citrate uptake in growing cells of Lactococcus lactis subsp. lactis biovar. diacetylactis identified a proton-dependent transport and suggested the divalent anionic species as the form of citrate transported across cell membranes. The reaction followed Michaelis-Menten kinetics for a two-substrate reaction. The limiting steps were the formation of the ternary complex and the rate of transport. Temperature modified the activity of the permease, increasing the uptake rate.  相似文献   

6.
We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein is located in a narrow zone between the crystalloid and the peroxisomal membrane. In non-crystalline organelles the enzyme was present throughout the peroxisomal matrix. Other peroxisomal matrix enzymes studied for comparison, namely dihydroxyacetone synthase, amine oxidase and malate synthase, all were present throughout the AO crystalloid. The advantage of location of catalase at the edges of the AO crystalloids for growth of the organism on methanol is discussed.  相似文献   

7.
The pyruvate metabolism of a Lactococcus lactis subsp. lactis biovar diacetylactis mutant deficient in alpha-acetolactate decarboxylase and its wild-type strain was studied during batch cultivations. A chemically defined medium was used containing glucose as carbon- and energy-source. The alpha-acetolactate decarboxylase deficiency had no effect on the specific growth rate. Addition of citrate was found to increase the specific growth rate of both strains under aerobic and anaerobic conditions. The product formation was monitored throughout the cultivations. The carbon- and redox-balances were within the accuracy of the experimental data. When citrate was added, alpha-acetolactate, diacetyl, and acetoin were formed, and aeration was shown to have a positive effect on the formation of these metabolites. By omitting lipoic acid (required for a functional pyruvate dehydrogenase complex) from the growth medium, a similar stimulatory effect on alpha-acetolactate, diacetyl, and acetoin formation was observed under aerobic conditions. The strain with impaired alpha-acetolactate decarboxylase activity accumulated alpha-acetolactate which resulted in an increased diacetyl formation compared to the wild-type strain, under aerobic and anaerobic conditions.  相似文献   

8.
Continuous cultures of a recombinant Lactococcus lactis subsp. lactis strain were performed to display the effect of the fermentation pH on the specific growth rate and plasmid stability. The proportion of plasmid pIL252 bearing cells decreased exponentially with the number of generations. The influence of the pH on the rate of loss of plasmid pIL252 and on the specific growth rate of L. lactis IL2682 was described by second order polynomial equations. Optimal pH for the growth and plasmid stability were 6.39 and 6.41 respectively. © Rapid Science Ltd. 1998  相似文献   

9.
Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.   总被引:9,自引:5,他引:4       下载免费PDF全文
The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases.  相似文献   

10.
11.
pBLI is a conjugative linear extrachromosomal element of 43 kb previously isolated after interspecific mating between Streptomyces bambergiensis and S. lividans. Cloning experiments using the non-conjugative, circular Streptomyces vector pIJ702 allowed the identification of a 5.74 kb region from pBL1 which facilitates plasmid transfer. Insertion and deletion mutagenesis, gene disruptions, and sequence data suggest that at least five previously unknown genes of pBL1 are required for efficient plasmid transfer and its regulation.  相似文献   

12.
A nucleoside N-deoxyribosyltransferase-homologous gene was detected by homological search in the genomic DNA of Lactococcus lactis subsp. lactis. The gene yejD is composed of 477 nucleotides encoding 159 amino acids with only 25% identity, which is low in comparison to the amino acid sequences of the N-deoxyribosyltransferases from other lactic acid bacteria, i.e. Lactobacillus leichmannii and Lactobacillus helveticus. The residues responsible for catalytic and substrate-binding sites in known enzymes are conserved at Gln49, Asp73, Asp93 (or Asp95), and Glu101, respectively. The recombinant YejD expressed in Escherichia coli shows a 2-deoxyribosyl transfer activity to and from both bases of purine and pyrimidine, showing that YejD should be categorized as a class II N-deoxyribosyltransferase. Interestingly, the base-exchange activity as well as the heat stability of YejD was enhanced by the presence of monovalent cations such as K(+), NH(4)(+), and Rb(+), indicating that the Lactococcus enzyme is a K(+)-activated Type II enzyme. However, divalent cations including Mg(2+) and Ca(2+) significantly inhibit the activity. Whether or not the yejD gene product actually participates in the nucleoside salvage pathway of Lc. lactis remains unclear, but the lactic acid bacterium possesses the gene coding for the nucleoside N-deoxyribosyltransferase activated by K(+) on its genome.  相似文献   

13.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

14.
Unlike other lactic acid bacteria, Lactococcus lactis subsp. lactis NCDO 2118 was able to grow in a medium lacking glutamate and the amino acids of the glutamate family. Growth in such a medium proceeded after a lag phase of about 2 days and with a reduced growth rate (0.11 h−1) compared to that in the reference medium containing glutamate (0.16 h−1). The enzymatic studies showed that a phosphoenolpyruvate carboxylase activity was present, while the malic enzyme and the enzymes of the glyoxylic shunt were not detected. As in most anaerobic bacteria, no α-ketoglutarate dehydrogenase activity could be detected, and the citric acid cycle was restricted to a reductive pathway leading to succinate formation and an oxidative branch enabling the synthesis of α-ketoglutarate. The metabolic bottleneck responsible for the limited growth rate was located in this latter pathway. As regards the synthesis of glutamate from α-ketoglutarate, no glutamate dehydrogenase was detected. While the glutamate synthase-glutamine synthetase system was detected at a low level, high transaminase activity was measured. The conversion of α-ketoglutarate to glutamate by the transaminase, the reverse of the normal physiological direction, operated with different amino acids as nitrogen donor. All of the enzymes assayed were shown to be constitutive.  相似文献   

15.
Resistance to a broad class of isometric bacteriophages that infect strains of Lactococcus lactis has been engineered into a dairy starter by expression of antisense mRNA targeted against a conserved bacteriophage gene. Maximum protection is obtained only when the entire 1,654-bp coding sequence for a 51-kDa protein is positioned in the antisense orientation with respect to a promoter sequence that functions in L. lactis subsp. lactis. Expression of the antisense mRNA results in more than 99% reduction of the total number of PFU. Plaques that do form are characterized by their relatively small size and irregular shape. A variety of truncated genes, including the open reading frame expressed in the sense orientation, fail to provide any significant measure of resistance as compared with that of the intact open reading frame. Southern hybridization with probes specific for the conserved region reveal that the [ill] plasmid constructs are maintained despite the presence of a large complement of other indigenous plasmids. Strains harboring the antisense mRNA plasmid construct grow and produce acid at a rate equivalent to that of the host strain alone, suggesting that antisense expression is not deleterious to normal cellular metabolism.  相似文献   

16.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

17.
A plasmid known to be associated with mupirocin resistance of Staphylococcus aureus has been isolated and a restriction enzyme map constructed. An EcoRI fragment of 4.05 kb from this plasmid has been cloned into an Escherichia coli-Staphylococcus aureus shuttle vector and shown to carry the gene for resistance to mupirocin. The DNA sequence of a small section of the gene has been determined and the derived amino acid sequence compared with a data bank. The amino acid sequence is identical for eight amino acids with the sequence of isoleucyl tRNA synthetase of E. coli. This finding adds to the evidence that mupirocin resistance is the result of a modified isoleucyl tRNA synthetase.  相似文献   

18.
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

19.
Summary The cell wall proteinases of Lactococcus lactis subsp. lactis NCDO 763 and L. lactis subsp. cremoris AC1 hydrolyse -casein with a similar specificity even though some quantitative differences can be observed for a few degradation products analysed by reverse phase HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The main peptides soluble in 1.1% trifluoroacetic acid and liberated by the two proteinases were identified and have been found to be the same for the two enzymes. They are located in two areas of the -casein sequence (53–93 and the C-terminal part: 129–209) and they include bitter tasting or physiologically active fragments. No narrow specificity was observed for these proteinases. However, glutamine and serine residues are more frequently encountered in position P1 and P1 of the sensitive peptide bond and the close environment (position P2 to P4 and P2 to P4) of the cleaved bond is mainly hydrophobic.  相似文献   

20.
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号