首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyclonal antibodies directed against laminin (LM), and against the A and B chains of reduced LM were used to identify antigenically related proteins in the extracellular matrix (ECM) of the snail Helisoma trivolvis Immunofluorescence of snail central ganglionic rings using either the anti-LM or anti-B chain antibodies labeled the ECM within ganglionic sheaths as well as basal laminae surrounding the ganglia. Both the anti-LM and anti-B chain antibodies recognized a prominent, ~300-kD protein on immunoblots of a snail central ganglion preparation enriched in ECM components. The anti-A chain antibody failed to label any structures in sections of snail ganglia or to recognize any proteins on immunoblots of ganglionic ECM. A polyclonal antibody was raised against the ~300-kD snail protein. Immunofluorescence of snail ganglia with the anti-~300-kD antibody gave a distribution of labeled structures comparable to that obtained with the anti-LM antibody. Immunofluorescent labeling of sections of snail muscle and salivary gland with the anti-~300-kD antibody revealed a distribution of reactive protein characteristic of an ECM component. Probing immunoblots of ganglionic ECM with the anti- ~300-kD antibody revealed the recognition of the same ~ 300-kD protein as identified by the anti-LM antibodies. Media conditioned by Helisoma central ganglionic rings (CM) contains an unidentified neurite outgrowth promoting factor (NOPF). Immunoblots of CM probed with the anti-B chain and anti- ~300-kD antibodies reveal the recognition of a soluble ~300-kD protein similar to the ~300-kD protein identified in snail ECM. The ganglionic ECM preparation containing the ~300-kD protein supported outgrowth from cultured snail buccal neurons B5, and addition of anti- ~300-kD Fab fragments to CM abolished its outgrowth promoting activity. These results suggest that the ~300-kD ECM protein may be the NOPF in CM and /or functions in promoting neurite outgrowth.  相似文献   

2.
Neurite outgrowth factor (NOF) is a glycoprotein isolated from an extract of gizzard that induces neurite outgrowth from cultured retinal or ciliary ganglionic (CG) neurons. We have reported that a glycoprotein of approximately 82 kD solubilized from gizzard muscles binds to NOF (ligand blotting) and inhibits the neurite promoting activity of NOF (inhibition assay). The 82-kD protein (NOF binding protein) was purified from gizzard muscle membranes as a doublet band on SDS-PAGE and a polyclonal antibody was raised against it. An NOF binding protein in developing retina exhibited the same physicochemical properties as that of the gizzard muscle. Quantitative decrease in NOF binding protein in embryonic retinas was observed after day 11 by the inhibition assay, ligand blotting, and immunoblotting, its decrease being parallel with reduction of NOF-induced neurite outgrowth of embryonic retinas. In an immunohistochemical study, the antibody stained only the optic fiber layers of the retinas of 8-d embryos, and this staining was no longer detectable in retinas of 18-d embryos. These results suggest that the 82-kD protein is a novel membrane protein that behaves as an NOF receptor and that the loss of neuritic response of the retinal neurons to NOF reflects a decrease in NOF receptor molecules.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2659-2672
We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neuronal cell types that secrete LN, and on intact extracellular matrices. Neurite outgrowth on all of these substrates is blocked by two monoclonal antibodies, CSAT and JG22, that prevent the adhesion of many cells, including neurons, to the ECM constituents LN, FN, and collagen. Neurite outgrowth is inhibited even on mixed LN/poly-D-lysine substrates where neuronal attachment is independent of LN. Therefore, neuronal process outgrowth on extracellular matrices requires the function of neuronal cell surface molecules recognized by these antibodies. The surfaces of cultured astrocytes, Schwann cells, and skeletal myotubes also promote rapid process outgrowth from CG neurons. Neurite outgrowth on these surfaces, though, is not prevented by CSAT or JG22 antibodies. In addition, antibodies to a LN/proteoglycan complex that block neurite outgrowth on several LN-containing CM factors and on an ECM extract failed to inhibit cell surface-stimulated neurite outgrowth. After extraction with a nonionic detergent, Schwann cells and myotubes continue to support rapid neurite outgrowth. However, the activity associated with the detergent insoluble residue is blocked by CSAT and JG22 antibodies. Detergent extraction of astrocytes, in contrast, removes all neurite- promoting activity. These results provide evidence for at least two types of neuronal interactions with cells that promote neurite outgrowth. One involves adhesive proteins present in the ECM and ECM receptors on neurons. The second is mediated through detergent- extractable macromolecules present on non-neuronal cell surfaces and different, uncharacterized receptor(s) on neurons. Schwann cells and skeletal myotubes appear to promote neurite outgrowth by both mechanisms.  相似文献   

4.
We examined the distribution of fibronectin-like (FNL) immunoreactivity associated with intact buccal ganglia, cell-cultured buccal ganglia neurons and nonneuronal cells, and brain-conditioned medium from the snail Helisoma. In addition, the possible roles of fibronectin in the regulation of neurite outgrowth were studied. Immunofluorescent staining for FNL antigens revealed intense staining in patches and fibrous arrays over the connective tissue sheaths of buccal ganglia and nerve trunks. Within the ganglia, heavy staining was seen surrounding neurons and in track-like arrangements. In cell cultures, specific staining was associated with nonneuronal cell surfaces and to a lesser degree with the surface of identified neurons. In addition, a noncellular, substrate-bound component of brain-conditioned medium displayed FNL immunoreactivity. Since cultured Helisoma neurons require a substrate-associated, brain-derived conditioning factor (CF) in order to elaborate neurites with motile growth cones, we tested whether the FNL immunoreactive substance might act as a neuritotropic agent. Fibronectin antiserum suppressed, in a dose-dependent manner, the CF-induced sprouting of identified neurons in isolated cell culture. When added at increasing concentrations to neurons already growing in response to CF, fibronectin antiserum exerted a biphasic effect on neurite elongation; outgrowth was accelerated at low, but inhibited at high, antiserum concentrations. In contrast, growth cone structures associated with motility (filopodia and lamellipodia) were progressively reduced by increasing levels of antiserum. A short peptide derived from fibronectin's cell-binding domain (Arg-Gly-Asp-Ser) also greatly reduced neurite outgrowth. The combined results of this study indicate an abundance of FNL immunoreactive molecules within the CNS of Helisoma, their probable production by nonneuronal cells, and their function as a substrate-associated component of CF which promotes growth cone filopodial and lamellipodial activity.  相似文献   

5.
Leech neurons in culture sprout rapidly when attached to extracts from connective tissue surrounding the nervous system. Laminin-like molecules that promote sprouting have now been isolated from this extracellular matrix. Two mAbs have been prepared that react on immunoblots with a approximately equal to 220- and a approximately equal to 340-kD polypeptide, respectively. These antibodies have been used to purify molecules with cross-shaped structures in the electron microscope. The molecules, of approximately equal to 10(3) kD on nonreducing SDS gels, have subunits of approximately equal to 340, 220, and 160-180 kD. Attachment to the laminin-like molecules was sufficient to initiate sprouting by single isolated leech neurons in defined medium. This demonstrates directly a function for a laminin-related invertebrate protein. The mAbs directed against the approximately equal to 220-kD chains of the laminin-like leech molecule labeled basement membrane extracellular matrix in leech ganglia and nerves. A polyclonal antiserum against the approximately equal to 220-kD polypeptide inhibited neurite outgrowth. Vertebrate laminin did not mediate the sprouting of leech neurons; similarly, the leech molecule was an inert substrate for vertebrate neurons. Although some traits of structure, function, and distribution are conserved between vertebrate laminin and the invertebrate molecule, our results suggest that the functional domains differ.  相似文献   

6.
《The Journal of cell biology》1995,129(5):1391-1401
We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N- acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because they inhibit adhesion and neurite outgrowth and are present in situ at barriers to neuronal growth. We therefore assayed purified CSPGs for their ability to inhibit homophilic cadherin-mediated adhesion and neurite outgrowth, as well as their ability to bind directly to the GalNAcPTase. A proteoglycan with a 250-kD core protein following removal of chondroitin sulfate chains (250-kD PG) inhibits cadherin-mediated adhesion and neurite outgrowth whether presented as the core protein or as a proteoglycan monomer bearing chondroitin sulfate. A proteoglycan with a 400-kD core protein is not inhibitory in either core protein or monomer form. Treatment of cells with phosphatidylinositol-specific phospholipase C, which removes cell surface GalNAcPTase, abolishes this inhibitory effect. Binding of the 250-kD core protein to cells is competed by the anti-GalNAcPTase antibody 1B11, suggesting that 1B11 and the 250-kD core protein bind to the same site or in close proximity. Moreover, soluble GalNAcPTase binds to the immobilized 250-kD core protein but not to the immobilized 400-kD core protein. Concomitant with inhibition of cadherin mediated adhesion, binding of the 250-kD core protein to the GalNAcPTase on cells results in the enhanced tyrosine phosphorylation of beta-catenin and the uncoupling of N-cadherin from its association with the cytoskeleton. Moreover, the 250-kD PG is present in embryonic chick retina and brain and is associated with the GalNAcPTase in situ. We conclude that the 250-kD PG is an endogenous ligand for the GalNAcPTase. Binding of the 250-kD PG to the GalNAcPTase initiates a signal cascade, involving the tyrosine phosphorylation of beta-catenin, which alters the association of cadherin with the actin-containing cytoskeleton and thereby inhibits adhesion and neurite outgrowth. Regulation of the temporal and spatial expression patterns of each member of the GalNacPTase/250-kD PG interactive pair may create opportunities for interaction that influence the course of development through effects on cadherin-based morphogenetic processes.  相似文献   

7.
A 58-kD cis-Golgi protein has been identified by generating polyclonal antibodies against heavy (cis) Golgi subfractions. Total microsomes isolated from rat pancreatic homogenates were subfractionated to yield a rough microsomal fraction (B1) and three smooth membrane subfractions (B2-B4) enriched in cis-, middle, and trans-Golgi elements, respectively. The heavy (cis) subfraction, B2 (d = 1.17 g/ml), was fractionated by Triton X-114 phase separation, and the proteins recovered in the detergent phase were used to immunize rabbits. One of the anti-B2 antibodies obtained gave a "Golgi"-staining pattern when screened by immunofluorescence on normal rat kidney cells and mouse RPC 5.4 myeloma cells. In rat pancreatic exocrine cells the antibody reacted with the plasmalemma as well as elements in the Golgi region. By immunoelectron microscopy, the antigen recognized by anti-B2 IgG was found to be restricted to cis-Golgi elements in myeloma cells where it was concentrated in the fenestrated cis-most cisterna and in some of the tubules and vesicles located along the cis face of the Golgi complex. By immunoprecipitation and immunoblotting, the anti-B2 IgG exclusively recognized a 58-kD protein in myeloma cells. The anti-B2 IgG reacted with several proteins in solubilized pancreatic B2 membranes, including a 58-kD protein, but affinity-purified anti-58-kD IgG reacted exclusively with the 58-kD protein. These results suggest that the 58-kD protein is a specific component of cis-Golgi membranes.  相似文献   

8.
Novel chemical and electrical connections form between neurons not normally connected in the buccal ganglia of the snail Helisoma. We examined the cellular and environmental conditions required for the formation of each type of connection. Previous work in situ showed that novel electrical connections could form in response to axotomy. We have now found that axotomy can evoke the formation of novel unidirectional chemical connections between neurons B5 and B4 in addition to a novel electrical connection. The novel chemical connections display all of the normal properties of chemical synapses in Helisoma ganglia. These connections, however, are transient in nature and break 4 days following axotomy. Previous work has shown that conjoint outgrowth is required for the formation of electrical connections. In cell culture we have investigated whether conjoint outgrowth is also required for chemical synaptogenesis. Using neurons B5 and B19 we have found that when neuron pairs make contact in cell culture, under conditions of synchronous neurite extension, both electrical and chemical synapses form. However, if one neuron has ceased extension prior to contact by a growing neuron, electrical synapses never form (Hadley et al., 1983, 1985) but chemical synapses do form. Furthermore, the addition of serotonin (10(-6) M) to culture medium to inhibit neurite extension of B19, but not that of B5, selectively prevents the formation of electrical connections while permitting the formation of chemical synapses. Thus, the timing of contact in relation to the state of neurite extension can specify the type of connection a given neuron can form.  相似文献   

9.
Thy-1 is highly expressed in the mammalian nervous system. Our previous study showed that addition of anti-Thy-1 antibody to cultured dorsal root ganglionic (DRG) neurons promotes neurite outgrowth. In this study, we identified a novel signaling pathway mediating this event. Treatment with function-blocking anti-Thy-1 antibodies enhanced neurite outgrowth of DRG neurons in terms of total neurite length, longest neurite length, and total neurite branching points. To elucidate the possible signal transduction pathway involved, activation of kinases was evaluated by Western blotting. Transient phosphorylation of protein kinase A (PKA) and mitogen-activated kinase kinase (MEK) was induced after 15 min of anti-Thy-1 antibody treatment. Pretreatment with a PKA inhibitor (PKI) or an MEK inhibitor, PD98059, significantly decreased the neurite outgrowth response triggered by anti-Thy-1 antibody, indicating the involvement of both kinases. In addition, anti-Thy-1 antibody treatment also induced transient phosphorylation of cyclic AMP-response element-binding protein (CREB) and this effect was also blocked by a PKI or PD98059. Furthermore, the fact that PKI abolished anti-Thy-1 antibody-induced MEK phosphorylation showed that PKA acts upstream of the MEK-CREB cascade. In summary, the PKA-MEK-CREB pathway is a new pathway involved in the neurite outgrowth-promoting effect of anti-Thy-1 antibody.  相似文献   

10.
The mammalian tooth pulp becomes innervated by nociceptive and sympathetic axons relatively late during development, when part of the root has formed. In the adult, regenerating axons from an injured tooth nerve or sprouting axons from uninjured nerves in the vicinity rapidly reinnervate denervated tooth pulps. These observations indicate that tooth pulp tissue can use molecular factors to attract pulpal axons from local nerve trunks. The present study examines the hypothesis that these factors include nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF). Explants of trigeminal ganglia from neonatal rat pups showed a distinct neurite outgrowth when co-cultured with pulpal explants collected from molar teeth of 12-day old pups, or after application of a pulpal extract. Control cultures, containing single ganglionic explants, or explants co-cultured with heat-treated pulpal tissue, exhibited a sparse neurite outgrowth. Exogenous NGF and/or GDNF, but not exogenous BDNF, stimulated neurite outgrowth from ganglionic explants. Unexpectedly, application of antibodies against NGF, BDNF and/or GDNF to co-cultures of ganglionic and pulpal explants did not inhibit neuritogenesis. Control experiments showed that IgG molecules readily penetrate the gel used for culture and that even very high concentrations of NGF and GDNF antibodies in combination failed to block neurite growth. On the basis of these data we suggest that other as yet unknown neurite-promoting factors might be present and active in TG/pulpal co-cultures.  相似文献   

11.
Laminin derived from the Engelbreth-Holm-Swarm (EHS) tumor and a lamininlike molecule synthesized by RN22 Schwannoma cells both stimulate rapid neurite outgrowth, consistent with a common neurite-promoting site. However, antilaminin antisera can only inhibit the activity of the EHS laminin. The blocking antibodies in such sera are directed against the terminal heparin-binding domain of the laminin long arm (Edgar, D., R. Timpl, and H. Thoenen. 1984. EMBO [Eur. Mol. Biol. Organ.] J. 3: 1463-1468). These epitopes are demonstrated by immunoblotting to be part of the A chain and to be absent in RN22 laminin, showing (through metabolic labeling) that the cells synthesized little if any 440-kD A chain. This indicates that the antibody inhibition was probably due to steric hindrance, a common neurite-promoting site, apparently not being antigenic in native molecules. Antibodies raised against a 25-kD proteolytic fragment derived from the long arm of laminin were then used as probes to identify other potential neurite-promoting structures. Although these antibodies do not cross-react with native laminin, they recognized the B chains of denatured EHS and RN22 molecules on immunoblots. The antibodies also bound to the large proteolytic fragment, derived from the long arm of laminin that contains the neurite-promoting site, thus inhibiting its activity. Taken together, these results point to the localization of normally nonantigenic, defined, B chain sequences within or close to the neurite-promoting site of laminin.  相似文献   

12.
Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.  相似文献   

13.
Abstract: Antiserum against a neurite outgrowth factor (NOF) of gizzard extract that promotes neurite outgrowth from dissociated ciliary ganglionic neurons (CG neurons) of 8-day-old chick embryo was prepared to determine whether or not the antiserum inhibits neurite outgrowth from cultured neurons or explants of chick and murine tissues. When CG neurons were cultured on a polyornithine-coated well exposed to NOF (NOF-bound POR well), marked neurite outgrowth was observed. When NOF-bound POR wells were exposed to antiserum, neurite outgrowth from CG neurons was gradually inhibited with increasing amounts of antiserum, while exposure to preimmune serum did not prevent neurite outgrowth. Antiserum had no effect on neuronal survival during a 48-h incubation. The diluted antiserum, which produced nearly 100% inhibition of the NOF activity, was almost equally active in suppressing the activity of NOFs in conditioned media (CM) of various chick embryo tissues, but showed much less inhibitory effects on NOFs in CM of murine tissues. The appearance of neurites from explants of spinal cord, dorsal root ganglion, or retina of chick embryo was also inhibited by the antiserum. These results indicate that antiserum against NOF from gizzard extract suppressed the activity of NOFs from various sources, and that there are species differences in NOFs, at least between chick and murine.  相似文献   

14.
We have isolated a nonneuronal cell line from Xenopus retinal neuroepithelium (XR1 cell line). On the basis of immunocytochemical characterization using monoclonal antibodies generated in our laboratory as well as several other glial-specific antibodies, we have established that the XR1 cells are derived from embryonic astroglia. A monolayer of XR1 cells serves as an excellent substrate upon which embryonic retinal explants attach and elaborate neurites. This neurite outgrowth promoting activity appears not to be secreted into the medium, as medium conditioned by XR1 cells is ineffective in promoting outgrowth. Cell-free substrates were prepared to examine whether outgrowth promoting activity is also associated with the XR1 extracellular matrix (ECM). Substrates derived from XR1 cells grown on collagen are still capable of promoting outgrowth following osmotic shock and chemical extraction. This activity does not appear to be associated with laminin or fibronectin. Scanning electron microscopy was used to examine growth cones of retinal axons on XR1 cells and other substrates that supported neurite outgrowth. Growth cones and neurites growing on a monolayer of XR1 cells, or on collagen conditioned by XR1 cells, closely resemble the growth cones of retinal ganglion cells in vivo. A polyclonal antiserum (NOB1) generated against XR1 cells effectively and specifically inhibits neurite outgrowth on XR1-conditioned collagen. We therefore propose that neurite outgrowth promoting factors produced by these cells are associated with the extracellular matrix and may be glial specific.  相似文献   

15.
The Nogo66 receptor (NgR1) is a neuronal, leucine-rich repeat (LRR) protein that binds three central nervous system (CNS) myelin proteins, Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein, and mediates their inhibitory effects on neurite growth. Although the LRR domains on NgR1 are necessary for binding to the myelin proteins, the exact epitope(s) involved in ligand binding is unclear. Here we report the generation and detailed characterization of an anti-NgR1 monoclonal antibody, 7E11. The 7E11 monoclonal antibody blocks Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein binding to NgR1 with IC50 values of 120, 14, and 4.5 nm, respectively, and effectively promotes neurite outgrowth of P3 rat dorsal root ganglia neurons cultured on a CNS myelin substrate. Further, we have defined the molecular epitope of 7E11 to be DNAQLR located in the third LRR domain of rat NgR1. Our data demonstrate that anti-NgR1 antibodies recognizing this epitope, such as 7E11, can neutralize CNS myelin-dependent inhibition of neurite outgrowth. Thus, specific anti-NgR1 antibodies may represent a useful therapeutic approach for promoting CNS repair after injury.  相似文献   

16.
We have detected and begun to characterize a 17-kD centromere-specific protein, CENP-A (Earnshaw, W. C., and N. Rothfield, 1985, Chromosoma., 91:313-321). Sera from several humans with CREST scleroderma autoimmune disease (CREST: calcinosis, Raynaud's phenomenon, esophageal dsymotility, sclerodactyly, and telangiectasia) bind this protein in immunoblot assays of HeLa whole cell or nuclear extracts. We have affinity purified the anti-17-kD centromere protein (anti-CENP-A) specific antibodies from immunoblots of HeLa nuclear protein. The antibodies react with epitopes present on CENP-A derived from humans but apparently do not recognize specific epitopes in either rat or chicken nuclei. Only human nuclear protein is CENP-A positive by immunoblot. Furthermore, human cells show localization of anti-CENP-A antibody to centromeres by immunofluorescence microscopy, whereas rat cells do not. On extraction from the nucleus, CENP-A copurifies with core histones and with nucleosome core particles. We conclude that this centromere-specific protein is a histone-like component of chromatin. The data suggest that CENP-A functions as a centromere-specific core histone.  相似文献   

17.
The molecular composition of the substrate is of critical importance for neurite extension by isolated identified leech nerve cells in culture. One substrate upon which rapid growth occurs in defined medium is a cell-free extract of extracellular matrix (ECM) that surrounds the leech central nervous system (CNS). Here we report the co-purification of neurite-promoting activity with a laminin-like molecule. High molecular mass proteins from leech ECM purified by gel filtration exhibited increased specific activity for promoting neurite outgrowth. The most active fractions contained three major polypeptide bands of ca. 340, 250 and 220 kDa. Electron microscopy of rotary-shadowed samples showed three macromolecules, one of which had a cross-shaped structure similar to vertebrate laminin. A second six-armed molecule resembled vertebrate tenascin and a third rod-like molecule resembled vertebrate collagen type IV. The most active fractions contained a protein of ca. 1 MDa on non-reducing gels with disulphide-linked subunits of ca. 220 and 340 kDa, with cross-shaped laminin-like molecules. We conclude that a laminin-like molecule represents a major neurite promoting component present in leech ECM. The experiments represent a first step in determining the location of leech laminin within the CNS and assessing its role in neurite outgrowth during development and regeneration.  相似文献   

18.
The neurotransmitter serotonin has been shown to inhibit neurite outgrowth in specific identified neurons isolated from adult Helisoma. While in vivo experiments on Helisoma embryos have supported the hypothesis that endogenous serotonin regulates neurite outgrowth during embryonic development, direct effects of serotonin on embryonic neurons have not been measured. In the present study, cultures of dissociated embryonic neurons were used to test the direct actions of serotonin on developing embryonic neurons. Serotonin arrested neurite outgrowth in a significant percentage of elongating neurites in a dose-dependent manner. Furthermore, analysis of neurons with stable, nonelongating neurites revealed a novel response. Serotonin caused the reinitiation of neurite outgrowth in a significant percentage of nonelongating neurites. The arrestment of outgrowth and reinitiation of outgrowth occurred in similar percentages of elongating and nonelongating neurites, respectively. Parallel experiments on cultures of dissociated adult neurons were carried out to determine whether serotonin could also induce both inhibitory and stimulatory responses in adult cells. Serotonin arrested neurite outgrowth in a similar percentage of neurites to that observed in cultures of embryonic neurons. In contrast, serotonin did not reinitiate neurite outgrowth in a significant percentage of adult neurites. These data support the hypothesis that serotonin regulates neurite outgrowth in developing embryonic neurons. Furthermore, only some of these regulatory effects appear to be conserved from embryonic to adult neurons.  相似文献   

19.
1. An extract of denervated skeletal muscle contained activity for promotion of neurite outgrowth from telencephalic neurons, as well as that from neurons in the spinal cord. A factor responsible for the activity was characterized in cultures of dissociated neurons.2. The factor acted on neurons only when they were attached to the surface of culture dishes. Since treatments with proteases and lectins reduced the outgrowth-promoting activity, the factor was thought to be a glycoprotein.3. Among the monoclonal antibodies raised against the partially purified extract, five antibodies were found to inhibit the activity for spinal and telencephalic neurons. The most potent antibody, 4D2a, recognized mainly a 63-kD protein and other minor proteins in the extract. Although the 63-kD protein was confirmed to be chick serum albumin by analysis of amino acid sequence, the purified albumin exhibited no activity.4. From these observations, the factor was found to be a glycoprotein recognized by the neutralizing antibody as one of the minor components of the extract. This factor exhibits its activity in a substrate-bound form but not in a diffusible one.  相似文献   

20.
《Developmental biology》1985,111(1):62-72
Explants of cranial sensory ganglia and dorsal root ganglia from embryonic chicks of 4 to 16 days incubation (E4 to E16) were grown for 24 hr in collagen gels with and without nerve growth factor (NGF) in the culture medium. NGF elicited marked neurite outgrowth from neural crest-derived explants, i.e., dorsal root ganglia, the dorsomedial part of the trigeminal ganglion, and the jugular ganglion. This response was first observed in ganglia taken from E6 embryos, reached a maximum between E8 and E11, and gradually declined through E16. Explants in which the neurons were of placodal origin varied in their response to NGF. There was negligible neurite outgrowth from explants of the ventrolateral part of the trigeminal ganglion and the vestibular ganglion grown in the presence of NGF. The geniculate, petrosal, and nodose ganglia exhibited an early moderate response to NGF. This was first evident in ganglia taken from E5 embryos, reached a maximum by E6, and declined through later ages, becoming negligible by E13. Dissociated neuron-enriched cultures of vestibular, petrosal, jugular, and dorsal root ganglia were established from embryos taken at E6 and E9. At both ages NGF elicited neurite outgrowth from a substantial proportion of neural crest-derived neurons (jugular and dorsal root ganglia) but did not promote the growth of placode-derived neurons (vestibular and petrosal ganglia). Our findings demonstrate a marked difference in the response of neural crest and placode-derived sensory neurones to NGF. The data from dissociated neuron-enriched cultures suggest that NGF promotes survival and growth of sensory ganglionic neurons of neural crest origin but not of placodal origin. The data from explant cultures suggest that NGF promotes neurite outgrowth from placodal neurons of the geniculate, petrosal, and nodose ganglia early in their ontogeny. However, we argue that this fibre outgrowth emanates not from the placodal neurons but from neural crest-derived cells which normally give rise only to satellite cells of these ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号