首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some anticancer chemotherapeutics, such as anthracyclines and oxaliplatin, elicit immunogenic apoptosis, meaning that dying cancer cells are engulfed by dendritic cells and tumor antigens are efficiently presented to CD8+ T cells, which control residual tumor cells. Immunogenic apoptosis is characterized by pre-apoptotic cell surface exposure of calreticulin (CRT), which usually resides into the endoplasmic reticulum. We investigated the ability of the n3-polyunsaturated fatty acid docosahexaenoic acid (22:6n3, DHA) to induce pre-apoptotic CRT exposure on the surface of the human PaCa-44 pancreatic and EJ bladder cancer cell lines. Cells were treated with 150 μM DHA for different time periods, and, by immunoblot and immunofluorescence, we showed that DHA induced CRT exposure, before the apoptosis-associated phosphatidylserine exposure. As for the known immunogenic compounds, CRT exposure was inhibited by the antioxidant GSH, the pan-caspase zVAD-FMK, and caspase-8 IETD-FMK inhibitor. We provide the first evidence that DHA induces CRT exposure, representing thus a novel potential anticancer immunogenic chemotherapeutic agent.  相似文献   

2.
3.
Overexpression of calreticulin sensitizes SERCA2a to oxidative stress   总被引:11,自引:0,他引:11  
Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.  相似文献   

4.
Experiments performed in mice revealed that anthracyclines stimulate immunogenic cell death that is characterized by the pre-apoptotic exposure of calreticulin (CRT) on the surface of dying tumor cells. Here, we determined whether CRT exposure at the cell surface (ecto-CRT) occurs in human cancer in response to anthracyclines in vivo, focusing on acute myeloid leukemia (AML), which is currently treated with a combination of aracytine and anthracyclines. Most of the patients benefit from the induction chemotherapy but relapse within 1–12 months. In this study, we investigated ecto-CRT expression on malignant blasts before and after induction chemotherapy. We observed that leukemic cells from some patients exhibited ecto-CRT regardless of chemotherapy and that this parameter was not modulated by in vivo chemotherapy. Ecto-CRT correlated with the presence of phosphorylated eIF2α within the blasts, in line with the possibility that CRT exposure results from an endoplasmic reticulum stress response. Importantly, high levels of ecto-CRT on malignant myeloblasts positively correlated with the ability of autologous T cells to secrete interferon-γ on stimulation with blast-derived dendritic cell. We conclude that the presence of ecto-CRT on leukemia cells facilitates cellular anticancer immune responses in AML patients.  相似文献   

5.
To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.  相似文献   

6.
The voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane mediates metabolic flow, Ca(2+), and cell death signaling between the endoplasmic reticulum (ER) and mitochondrial networks. We demonstrate that VDAC1 is physically linked to the endoplasmic reticulum Ca(2+)-release channel inositol 1,4,5-trisphosphate receptor (IP(3)R) through the molecular chaperone glucose-regulated protein 75 (grp75). Functional interaction between the channels was shown by the recombinant expression of the ligand-binding domain of the IP(3)R on the ER or mitochondrial surface, which directly enhanced Ca(2+) accumulation in mitochondria. Knockdown of grp75 abolished the stimulatory effect, highlighting chaperone-mediated conformational coupling between the IP(3)R and the mitochondrial Ca(2+) uptake machinery. Because organelle Ca(2+) homeostasis influences fundamentally cellular functions and death signaling, the central location of grp75 may represent an important control point of cell fate and pathogenesis.  相似文献   

7.
Fertilization triggers cytosolic Ca(2+) oscillations that activate mammalian eggs and initiate development. Extensive evidence demonstrates that Ca(2+) is released from endoplasmic reticulum stores; however, less is known about how the increased Ca(2+) is restored to its resting level, forming the Ca(2+) oscillations. We investigated whether mitochondria also play a role in activation-associated Ca(2+) signaling. Mitochondrial dysfunction induced by the mitochondrial uncoupler FCCP or antimycin A disrupted cytosolic Ca(2+) oscillations, resulting in sustained increase in cytosolic Ca(2+), followed by apoptotic cell death. This suggests that functional mitochondria may participate in sequestering the released Ca(2+), contributing to cytosolic Ca(2+) oscillations and preventing cell death. By centrifugation, mouse eggs were stratified and separated into fractions containing both endoplasmic reticulum and mitochondria and fractions containing endoplasmic reticulum with no mitochondria. The former showed Ca(2+) oscillations by activation, whereas the latter exhibited sustained elevation in cytosolic Ca(2+) but no Ca(2+) oscillations, suggesting that mitochondria take up released cytosolic Ca(2+). Further, using Rhod-2 for detection of mitochondrial Ca(2+), we found that mitochondria exhibited Ca(2+) oscillations, the frequency of which was not different from that of cytosolic Ca(2+) oscillations, indicating that mitochondria are involved in Ca(2+) signaling during egg activation. Therefore, we propose that mitochondria play a crucial role in Ca(2+) signaling that mediates egg activation and development, and apoptotic cell death.  相似文献   

8.
9.
Manganese as environmental factor is considered to cause parkinsonism and induce endoplasmic reticulum stress-mediated dopaminergic cell death. We examined the effects of manganese on parkin, identified as the gene responsible for familial Parkinson's disease, and the role of parkin in manganese-induced neuronal cell death. Manganese dose-dependently induced cell death of dopaminergic SH-SY5Y and CATH.a cells and cholinergic Neuro-2a cells, and that the former two cell types were more sensitive to manganese toxicity than Neuro-2a cells. Moreover, manganese increased the expression of endoplasmic reticulum stress-associated genes, including parkin, in SH-SY5Y cells and CATH.a cells, but not in Neuro-2a cells. Treatment with manganese resulted in accumulation of parkin protein in SH-SY5Y cells and its redistribution to the perinuclear region, especially aggregated Golgi complex, while in Neuro-2a cells neither expression nor redistribution of parkin was noted. Manganese showed no changes in proteasome activities in either cell. Transient transfection of parkin gene inhibited manganese- or manganese plus dopamine-induced cell death of SH-SY5Y cells, but not of Neuro-2a cells. Our results suggest that the attenuating effects of parkin against manganese- or manganese plus dopamine-induced cell death are dopaminergic cell-specific compensatory reactions associated with its accumulation and redistribution to perinuclear regions but not with proteasome system.  相似文献   

10.
GRP94 reduces cell death in SH-SY5Y cells perturbated calcium homeostasis   总被引:2,自引:0,他引:2  
The endoplasmic reticulum (ER) resident-94 kDa glucose-regulated protein (GRP94), plays a pivotal role in cell death due to ER stress. In our study expression of GRP94 was increased in human neuroblastoma SH-SY5Y cells due to exposure to calcium ionophore A23187. A23187-mediated cell death was associated with activation of the major cysteine proteases, caspase-3 and calpain. Pretreatment with adenovirus-mediated antisense GRP94 (AdGRP94AS) reduced viability of SH-SY5Y cells subjected to A23187 treatment compared with wild type cells or cells with adenovirus-mediated overexpression of GRP94 (AdGRP94S). These results indicated that suppression of GRP94 is associated with accelerated cell death. Moreover, expression of GRP94 suppressed A23187-induced cell death and stabilized calcium homeostasis.  相似文献   

11.
Calreticulin (CRT) is a highly conserved Ca(2+)-binding protein that resides in the lumen of the endoplasmic reticulum (ER). We overexpressed CRT in Xenopus oocytes to determine how it could modulate inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) influx. Under conditions where it did not affect the spatially complex elevations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) due to InsP(3)-induced Ca(2+) release, overexpressed CRT decreased by 46% the Ca(2+)-gated Cl(-) current due to Ca(2+) influx. Deletion mutants revealed that CRT requires its high capacity Ca(2+)-binding domain to reduce the elevations of [Ca(2+)](i) due to Ca(2+) influx. This functional domain was also required for CRT to attenuate the InsP(3)-induced decline in the free Ca(2+) concentration within the ER lumen ([Ca(2+)](ER)), as monitored with a "chameleon" indicator. Our data suggest that by buffering [Ca(2+)](ER) near resting levels, CRT may prevent InsP(3) from depleting the intracellular stores sufficiently to activate Ca(2+) influx.  相似文献   

12.
Calreticulin (CRT) and calnexin (CLNX) are lectin chaperones that participate in protein folding in the endoplasmic reticulum (ER). CRT is a soluble ER lumenal protein, whereas CLNX is a transmembrane protein with a cytosolic domain that contains two consensus motifs for protein kinase (PK) C/proline- directed kinase (PDK) phosphorylation. Using confocal Ca(2+) imaging in Xenopus oocytes, we report here that coexpression of CLNX with sarco endoplasmic reticulum calcium ATPase (SERCA) 2b results in inhibition of intracellular Ca(2+) oscillations, suggesting a functional inhibition of the pump. By site-directed mutagenesis, we demonstrate that this interaction is regulated by a COOH-terminal serine residue (S562) in CLNX. Furthermore, inositol 1,4,5-trisphosphate- mediated Ca(2+) release results in a dephosphorylation of this residue. We also demonstrate by coimmunoprecipitation that CLNX physically interacts with the COOH terminus of SERCA2b and that after dephosphorylation treatment, this interaction is significantly reduced. Together, our results suggest that CRT is uniquely regulated by ER lumenal conditions, whereas CLNX is, in addition, regulated by the phosphorylation status of its cytosolic domain. The S562 residue in CLNX acts as a molecular switch that regulates the interaction of the chaperone with SERCA2b, thereby affecting Ca(2+) signaling and controlling Ca(2+)-sensitive chaperone functions in the ER.  相似文献   

13.
In response to immunogenic cell death inducers, calreticulin (CRT) translocates from its orthotopic localization in the lumen of the endoplasmic reticulum (ER) to the surface of the plasma membrane where it serves as an engulfment signal for antigen-presenting cells.1 Here, we report that yet another ER protein, the lysyl-tRNA synthetase (KARS), was exposed on the surface of stressed cells, on which KARS co-localized with CRT in lipid rafts. Depletion of KARS with small interfering RNAs suppressed CRT exposure induced by anthracyclines or UVC light. In contrast to CRT, KARS was also found in the supernatant of stressed cells. Recombinant KARS protein was unable to influence the binding of recombinant CRT to the cell surface. Moreover, recombinant KARS protein was unable to stimulate macrophages in vitro. These results underscore the contribution of KARS to the emission of (one of) the principal signal(s) of immunogenic cell death, CRT exposure.  相似文献   

14.
In response to some chemotherapeutic agents, tumor cells can translocate calreticulin (CRT), which is usually contained in the lumen of the endoplasmic reticulum, to the surface of the plasma membrane. This effect requires the phosphorylation of the eukaryotic initiation factor 2a (eIF2a) by the eIF2a kinase PERK, yet may also be triggered by inhibition of the eIF2a phosphatase, which is composed by a catalytic subunit (PP1) and a regulatory subunit (GADD34). Here, we addressed the question whether the dissociation of the PP1/GADD34 complex would be sufficient to trigger CRT exposure. Molecular modeling led to the design of a GADD34-derived peptide that competitively disrupts the PP1/GADD34 complex. When added to intact cells, the GADD34-derived peptide fused to a plasma membrane translocation domain abolished the interaction between PP1 and GADD34, stimulated the phosphorylation of eIF2a, and triggered CRT exposure. However, the resolution of the PP1/GADD34 complex did not evoke apoptosis, allowing for the dissociation of CRT exposure and cell death. Anthracyclins, which are highly efficient in inducing CRT translocation to the cell surface also stimulated the dissociation of the PP1/GADD34 complex. These results suggest that the PP1/GADD34 complex plays a major role in the regulation of CRT exposure.  相似文献   

15.
The effects of subacute, acute and chronic ethanol exposure on the activity of Ca(2+)-accumulating systems of mitochondria and endoplasmic reticulum in myometrial cells of nonpregnant estrogen-treated rats were studied. It has been shown that the activity of Ca(2+)-accumulating system of mitochondria was higher than the activity of Ca(2+)-accumulating system of endoplasmic reticulum in myometrial cells from control, acute and subacute treated with ethanol rats. Under ethanol chronical assumption both Ca(2+)-accumulation in mitochondria and Ca(2+)-transporting activity of endoplasmic reticulum are inhibited. In the latter ease Mg2+, ATP-dependent Ca(2+)-pump lost its sensitivity to oxytocin.  相似文献   

16.
Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial Alzheimer's disease (FAD), have been causally implicated in the pathogenesis of neuronal cell death through a perturbation of cellular Ca(2+) homeostasis. We have recently shown that, at variance with previous suggestions obtained in cells expressing other FAD-linked PS mutations, PS2-M239I and PS2-T122R cause a reduction and not an increase in cytosolic Ca(2+) rises induced by Ca(2+) release from stores. In this contribution we have used different cell models: human fibroblasts from controls and FAD patients, cell lines (SH-SY5Y, HeLa, HEK293, MEFs) and rat primary neurons expressing a number of PS mutations, e.g. P117L, M146L, L286V, and A246E in PS1 and M239I, T122R, and N141I in PS2. The effects of FAD-linked PS mutations on cytosolic Ca(2+) changes have been monitored either by using fura-2 or recombinant cytosolic aequorin as the probe. Independently of the cell model or the employed probe, the cytosolic Ca(2+) increases, caused by agonist stimulation or full store depletion by drug treatment, were reduced or unchanged in cells expressing the PS mutations. Using aequorins, targeted to the endoplasmic reticulum or the Golgi apparatus, we here show that FAD-linked PS mutants lower the Ca(2+) content of intracellular stores. The phenomenon was most prominent in cells expressing PS2 mutants, and was observed also in cells expressing the non-pathogenic, "loss-of-function" PS2-D366A mutation. Taken as a whole, our findings, while confirming the capability of presenilins to modify Ca(2+) homeostasis, suggest a re-evaluation of the "Ca(2+) overload" hypothesis in AD and a new working hypothesis is presented.  相似文献   

17.
Calreticulin (CRT), as an endoplasmic reticulum luminal resident protein, plays important roles in Ca(2+) homeostasis and molecular chaperoning. CRT on the surface of the cell can modulate cell adhesion, phagocytosis and integrin-dependent Ca(2+) signaling. The full length cDNA of calreticulin (FcCRT) was cloned from Chinese shrimp Fenneropenaeus chinensis. It consists of 1672 bp with an open reading frame of 1221 bp, encoding 406 amino acids. This is the first reported cDNA sequence of calreticulin in Crustacea. The deduced amino acid sequence of FcCRT showed high identity with those of Bombyx mori (88%), Drosophila melanogaster (83%), Mus musculus (82%) and Homo sapiens (82%). Highest expression of FcCRT was detected in ovary by Northern blot and in situ hybridization. Different mRNA levels of FcCRT were detected at various molting stages. Expression of FcCRT was induced significantly after 3 h of heat shock treatment, reached the maximum at 4 h and dropped after that. Differential expression profiles of FcCRT were observed in hepatopancreas and haemocytes when shrimp were challenged by white spot syndrome virus (WSSV). From the above results, we inferred that FcCRT might play important roles in Ca(2+) homeostasis, chaperoning and immune function in shrimp.  相似文献   

18.
19.
Calreticulin (CRT), a chaperone typically located in the endoplasmic reticulum (ER), is known to translocate to the cell surface in response to anticancer drugs. Cell surface CRT (ecto-CRT) on apoptotic or pre-apoptotic cells serves as an “eat me” signal that can promote phagocytosis. In this study, we observed the biphasic (early transient and late sustained) increase of ecto-CRT on HT-29 cells after treatment with oxaliplatin (L-OHP). To investigate the role of ecto-CRT that accumulates in the early and late phases as “eat me” signals, we examined the phagocytosis of HT-29 cells by macrophage-like cells and dendritic cell (DC) -like cells prepared from THP-1 cells. The results indicated that the early ecto-CRT-expressed cells were phagocytosed by immature DC-like cells, and the late ecto-CRT-expressed cells were phagocytosed primarily by macrophage-like cells, while mature DC-like cells did not respond to the either class of ecto-CRT-expressed cells. Both types of phagocytotic events were inhibited by CRT Blocking Peptide, suggesting that such events depended on the ecto-CRT. Our results suggested that the early increase of ecto-CRT is related to phagocytosis as part of immunogenic cell death (ICD), while the late increase of ecto-CRT is related to the removal of apoptotic cells by macrophages.  相似文献   

20.
Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death   总被引:17,自引:0,他引:17  
The goal of the current study was to determine the roles of ATP content, endoplasmic reticulum (ER) Ca(2+) stores, cytosolic free Ca(2+) (Ca(2+)(f)) and calpain activity in the signaling of rabbit renal proximal tubular (RPT) cell death (oncosis). Increasing concentrations (0.3-10 microM) of the mitochondrial inhibitor antimycin A produced rapid ATP depletion that correlated to a rapid and sustained increase in Ca(2+)(f), but not phospholipase C activation. The ER Ca(2+)-ATPase inhibitors thapsigargin (5 microM) or cyclopiazonic acid (100 microM) alone produced similar but transient increases in Ca(2+)(f). Pretreatment with thapsigargin prevented antimycin A-induced increases in Ca(2+)(f) and antimycin A pretreatment prevented thapsigargin-induced increases in Ca(2+)(f). Calpain activity increased in conjunction with ER Ca(2+) release. Pretreatment, but not post-treatment, with thapsigargin or cyclopiazonic acid prevented antimycin A-induced cell death. These data demonstrate that extensive ATP depletion signals oncosis through ER Ca(2+) release, a sustained increase in Ca(2+)(f) and calpain activation. Depletion of ER Ca(2+) stores prior to toxicant exposure prevents increases in Ca(2+)(f) and oncosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号