首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potential of therapeutic vaccination of animals latently infected with herpes simplex virus type 1 (HSV-1) to enhance protective immunity to the virus and thereby reduce the incidence and severity of recurrent ocular disease was assessed in a mouse model. Mice latently infected with HSV-1 were vaccinated intranasally with a mixture of HSV-1 glycoproteins and recombinant Escherichia coli heat-labile enterotoxin B subunit (rEtxB) as an adjuvant. The systemic immune response induced was characterized by high levels of virus-specific immunoglobulin G1 (IgG1) in serum and very low levels of IgG2a. Mucosal immunity was demonstrated by high levels of IgA in eye and vaginal secretions. Proliferating T cells from lymph nodes of vaccinated animals produced higher levels of interleukin-10 (IL-10) than were produced by such cells from mock-vaccinated animals. This profile suggests that vaccination of latently infected mice modulates the Th1-dominated proinflammatory response usually induced upon infection. After reactivation of latent virus by UV irradiation, vaccinated mice showed reduced viral shedding in tears as well as a reduction in the incidence of recurrent herpetic corneal epithelial disease and stromal disease compared with mock-vaccinated mice. Moreover, vaccinated mice developing recurrent ocular disease showed less severe signs and a quicker recovery rate. Spread of virus to other areas close to the eye, such as the eyelid, was also significantly reduced. Encephalitis occurred in a small percentage (11%) of mock-vaccinated mice, but vaccinated animals were completely protected from such disease. The possible immune mechanisms involved in protection against recurrent ocular herpetic disease in therapeutically vaccinated animals are discussed.  相似文献   

2.
3.
4.
5.
6.
The genetic background of HSZP virus, an HSV1 strain with extensive passage history, was analyzed by parallel comparative sequencing of four relevant genes (UL27/gB, UL41/vhs, UL44/gC and UL53/gK) of HSZP and additional three selected viruses [strains ANGpath, strains KOS(a) and KOS(b) and the prototype strain 17]. Mutation at position 858 (His for Arg) in gB of HSZP was found to be responsible for giant cell formation (syn 3gB mutation) similarly as the 855 mutation (Val for Ala) in the gB of ANGpath. Nosyn 1gK mutations were detected in the UL53 gene either of HSZP or of ANGpath viruses. The reduced virulence of HSZP for adult mice after peripheral inoculation, similarly as that of KOS virus, seems to be related (at least in part) to numerous mutations in the gB ectodomain. Of these, two mutations located in the antigenic domain IV were the same in gBHSZP as well as in gBKOS (at amino acids 59 and 79), at least two (amino acids 313 and 553) were specific for gBKOS, while one mutation (Ser for Ala at position 108) was specific for gBHSZP. The abolished shutoff function of the HSZP virus was related to at least four out of six specific mutations seen in thevhs polypeptide (vhs HSZP) encoded by the UL41 gene, of which three (amino acids 374, 386, 392) were clustered in the semiconservative box A ofvhs HSZP (the truncation of which abrogates the inhibition provided by this protein) and one mutation (at amino acid 18) was situated in the highly conservative locus I ofvhs HSZP. In addition, the twovhs KOS specific mutations (amino acids 19 and 317) not found invhs HSZP, enhanced the early host shutoff function of thevhs KOS protein. Finally, gCHSZP had two specific mutations (amino acids 137 and 147) located in the antigenic domain II of gC, which is responsible for binding of HSV1 virions to the glycoso-aminoglycan (GAG) receptor. When expressed in Sf21 cells using the recombinatt baculovirus system (Bac-to-Bac), gCHSZP and gCKOS showed no essential antigenic differences. Presented at theInternational Conference on Recent Problems in Microbiology and Immunology, Košice (Slovakia), 13–15 October 1999.  相似文献   

7.
Herpes simplex virus type 1 (HSV-1) is a prevalent microbial pathogen infecting 60% to 90% of the adult world population. The co-evolution of the virus with humans is due, in part, to adaptations that the virus has evolved to aid it in escaping immune surveillance, including the establishment of a latent infection in its human host. A latent infection allows the virus to remain in the host without inducing tissue pathology or eliciting an immune response. During the acute infection or reactivation of latent virus, the immune response is significant, which can ultimately result in corneal blindness or fatal sporadic encephalitis. In fact, HSV-1 is one of the leading causes of infectious corneal blindness in the world as a result of chronic episodes of viral reactivation leading to stromal keratitis and scarring. Significant inroads have been made in identifying key immune mediators that control ocular HSV-1 infection and potentially viral reactivation. Likewise, viral mechanisms associated with immune evasion have also been identified and will be discussed. Lastly, novel therapeutic strategies that are currently under development show promise and will be included in this review. Most investigators have taken full advantage of the murine host as a viable working in vivo model of HSV-1 due to the sensitivity and susceptibility to viral infection, ease of manipulation, and a multitude of developed probes to study changes at the cellular and molecular levels. Therefore, comments in this review will primarily be restricted to those observations pertaining to the mouse model and the assumption (however great) that similar events occur in the human condition.  相似文献   

8.
9.
10.
Soluble forms of herpes simplex virus (HSV) glycoprotein D (gD) block viral penetration. Likewise, most HSV strains are sensitive to gD-mediated interference by cells expressing gD. The mechanism of both forms of gD-mediated inhibition is thought to be at the receptor level. We analyzed the ability of different forms of soluble, truncated gD (gDt) to inhibit infection by different strains of HSV-1 and HSV-2. Strains that were resistant to gD-mediated interference were also resistant to inhibition by gDt, thereby suggesting a link between these two phenomena. Virion gD was the major viral determinant for resistance to inhibition by gDt. An insertion-deletion mutant, gD-1(delta 290-299t), had an enhanced inhibitory activity against most strains tested. The structure and function of gDt proteins derived from the inhibition-resistant viruses rid1 and ANG were analyzed. gD-1(ridlt) and gD-1(ANGt) had a potent inhibitory effect on plaque formation by wild-type strains of HSV but, surprisingly, little or no effect on their parental strains. As measured by quantitative enzyme-linked immunosorbent assay with a diverse panel of monoclonal antibodies, the antigenic structures of gD-1(rid1t) and gD-1(ANGt) were divergent from that of the wild type yet were similar to each other and to that of gD-1 (delta 290-299t). Thus, three different forms of gD have common antigenic changes that correlate with enhanced inhibitory activity against HSV. We conclude that inhibition of HSV infectivity by soluble gD is influenced by the antigenic conformation of the blocking gDt as well as the form of gD in the target virus.  相似文献   

11.
Live viruses and live virus vaccines induce cellular immunity more readily than do inactivated viruses or purified proteins, but the mechanism by which this process occurs is unknown. A trivial explanation would relate to the ability of live viruses to spread and infect more cells than can inactivated virus. We have used live but replication-defective mutants to investigate this question. Our studies indicate that the immune responses of mice to live virus differ greatly from the responses to inactivated virus even when the virus does not complete a replicative cycle. Further, these studies indicate that herpes simplex virus-specific T-cell responses can be generated by infection with replication-defective mutant viruses. These data indicate that the magnitude of the cellular immunity to herpes simplex virus may be proportional to the number or quantity of different viral gene products expressed by an immunizing virus.  相似文献   

12.
Antiviral therapy induces a rapid drop in human immunodeficiency virus type 1 viremia, but the decline of virus levels decelerates over time. Mathematical modeling demonstrates that the source of residual virus production might be a single compartment of latently infected cells with an extended distribution of activation rates.  相似文献   

13.
D R Thomsen  L L Roof    F L Homa 《Journal of virology》1994,68(4):2442-2457
The capsid of herpes simplex virus type 1 (HSV-1) is composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, which are the products of six HSV-1 genes. Recombinant baculoviruses were used to express the six capsid genes (UL18, UL19, UL26, UL26.5, UL35, and UL38) in insect cells. All constructs expressed the appropriate-size HSV proteins, and insect cells infected with a mixture of the six recombinant baculoviruses contained large numbers of HSV-like capsids. Capsids were purified by sucrose gradient centrifugation, and electron microscopy showed that the capsids made in Sf9 cells had the same size and appearance as authentic HSV B capsids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the protein composition of these capsids was nearly identical to that of B capsids isolated from HSV-infected Vero cells. Electron microscopy of thin sections clearly demonstrated that the capsids made in insect cells contained the inner electron-translucent core associated with HSV B capsids. In infections in which single capsid genes were left out, it was found that the UL18 (VP23), UL19 (VP5), UL38 (VP19C), and either the UL26 (VP21 and VP24) or the UL26.5 (VP22a) genes were required for assembly of 100-nm capsids. VP22a was shown to form the inner core of the B capsid, since in infections in which the UL26.5 gene was omitted the 100-nm capsids that formed lacked the inner core. The UL35 (VP26) gene was not required for assembly of 100-nm capsids, although assembly of B capsids was more efficient when it was present. These and other observations indicate that (i) the products of the UL18, UL19, UL35, and UL38 genes self-assemble into structures that form the outer surface (icosahedral shell) of the capsid, (ii) the products of the UL26 and/or UL26.5 genes are required (as scaffolds) for assembly of 100-nm capsids, and (iii) the interaction of the outer surface of the capsid with the scaffolding proteins requires the product of the UL18 gene (VP23).  相似文献   

14.
15.
16.
17.
18.
The incorporation of [32P]Pi and [3H]inositol into the inositol lipids of baby-hamster kidney cells was studied in herpes-simplex-virus-type-1(HSV-1)-infected and mock-infected cells. The infection was conducted during incorporation of, as well as after prelabelling with, the precursors. These methods were used in order to study both synthesis de novo of, and steady-state changes in, the phosphoinositides. Both with infection during labelling, and after prelabelling, we found increased [32P]- and [3H]-phosphatidylinositol 4,5-bisphosphate (PIP2) and decreased [32P]- and [3H]-phosphatidylinositol 4-monophosphate in infected as compared with mock-infected cells, whereas no effect was observed on phosphatidylinositol. This altered inositol-lipid metabolism was (at least in the case of PIP2) not present until 3-6 h after infection and remained stable, or increased slightly, throughout the infection period. Polyphosphoinositide metabolism constitutes an important step in signal processing in many forms of cellular stimulation, and the results obtained suggest that HSV-1 infection may induce such events in our cell system.  相似文献   

19.
20.
Adaptive immune responses in which CD8(+) T cells recognize pathogen-derived peptides in the context of major histocompatibility complex class I molecules play a major role in the host defense against infection with intracellular pathogens. Cells infected with intracellular bacteria such as Listeria monocytogenes, Salmonella enterica serovar Typhimurium, or Mycobacterium tuberculosis are directly lysed by cytotoxic CD8(+) T cells. For this reason, current vaccines for intracellular pathogens, such as subunit vaccines or viable bacterial vaccines, aim to generate robust cytotoxic T-cell responses. In order to investigate the capacity of a herpes simplex virus type 1 (HSV-1) vector to induce strong cytotoxic effector cell responses and protection from infection with intracellular pathogens, we developed a replication-deficient, recombinant HSV-1 (rHSV-1) vaccine. We demonstrate in side-by-side comparison with DNA vaccination that rHSV-1 vaccination induces very strong CD8(+) effector T-cell responses. While both vaccines provided protection from infection with L. monocytogenes at low, but lethal doses, only rHSV-1 vaccines could protect from higher infectious doses; HSV-1 induced potent memory cytotoxic T lymphocytes that, upon challenge by pathogens, efficiently protected the animals. Despite the stimulation of relatively low humoral and CD4-T-cell responses, rHSV-1 vectors are strong candidates for future vaccine strategies that confer efficient protection from subsequent infection with intracellular bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号