首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most common mutation in the CFTR gene in individuals with cystic fibrosis (CF), F508, leads to the absence of CFTR Cl channels in the apical plasma membrane, which in turn results in impairment of mucociliary clearance, the first line of defense against inhaled bacteria. Pseudomonas aeruginosa is particularly successful at colonizing and chronically infecting the lungs and is responsible for the majority of morbidity and mortality in patients with CF. Rescue of F508-CFTR by reduced temperature or chemical means reveals that the protein is at least partially functional as a Cl channel. Thus current research efforts have focused on identification of drugs that restore the presence of CFTR in the apical membrane to alleviate the symptoms of CF. Because little is known about the effects of P. aeruginosa on CFTR in the apical membrane, whether P. aeruginosa will affect the efficacy of new drugs designed to restore the plasma membrane expression of CFTR is unknown. Accordingly, the objective of the present study was to determine whether P. aeruginosa affects CFTR-mediated Cl secretion in polarized human airway epithelial cells. We report herein that a cell-free filtrate of P. aeruginosa reduced CFTR-mediated transepithelial Cl secretion by inhibiting the endocytic recycling of CFTR and thus the number of WT-CFTR and F508-CFTR Cl channels in the apical membrane in polarized human airway epithelial cells. These data suggest that chronic infection with P. aeruginosa may interfere with therapeutic strategies aimed at increasing the apical membrane expression of F508-CFTR. cystic fibrosis  相似文献   

2.
The major disease-causing mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine 508 (F508), which adversely affects processing and plasma membrane targeting of CFTR. Under conditions predicted to stabilize protein folding, F508 CFTR is capable of trafficking to the plasma membrane and retains cAMP-regulated anion channel activity. Overexpression is one factor that increases CFTR trafficking; therefore, we hypothesized that expression of a domain mimic of the first nucleotide-binding fold (NBF1) of CFTR, i.e., the site of F508, may be sufficient to overwhelm the quality control process or otherwise stabilize F508 CFTR and thereby restore cAMP-stimulated anion secretion. In epithelial cells expressing recombinant F508 human (h)CFTR, expression of wild-type NBF1 increased the amount of both core-glycosylated and mature protein to a greater extent than expression of F508 NBF1. Expression of wild-type NBF1 in the F508 hCFTR cells increased whole cell Cl current density to 50% of that in cells expressing wild-type hCFTR. Expression of NBF1 in polarized epithelial monolayers from a F508/F508 cystic fibrosis mouse (MGEF) restored cAMP-stimulated transepithelial anion secretion but not in monolayers from a CFTR-null mouse (MGEN). Restoration of anion secretion was sustained in NBF1-expressing MGEF for >30 passages, whereas MGEN corrected with hCFTR progressively lost anion secretion capability. We conclude that expression of a NBF1 domain mimic may be useful for correction of the F508 CFTR protein trafficking defect in cystic fibrosis epithelia. protein processing; mouse; retrovirus; gene therapy  相似文献   

3.
We studied the functions of -subunits of Gi/o protein using the Xenopus oocyte expression system. Isoproterenol (ISO) elicited cAMP production and slowly activating Cl currents in oocytes expressing 2-adrenoceptor and the protein kinase A-dependent Cl channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 5-Hydroxytryptamine (5-HT), [D-Ala2, D-Leu5]-enkephalin (DADLE), and baclofen enhanced ISO-induced cAMP levels and CFTR currents in oocytes expressing 2-adrenoceptor-CFTR and 5-HT1A receptor (5-HT1AR), -opioid receptor, or GABAB receptor, respectively. 5-HT also enhanced pituitary adenylate cyclase activating peptide (PACAP) 38-induced cAMP levels and CFTR currents in oocytes expressing PACAP receptor, CFTR and 5-HT1AR. The 5-HT-induced enhancement of Gs-coupled receptor-mediated currents was abrogated by pretreatment with pertussis toxin (PTX) and coexpression of G transducin (Gt). The 5-HT-induced enhancement was further augmented by coexpression of the G-activated form of adenylate cyclase (AC) type II but not AC type III. Thus -subunits of Gi/o protein contribute to the enhancement of Gs-coupled receptor-mediated responses. 5-HT and DADLE did not elicit any currents in oocytes expressing 5-HT1AR or -opioid receptor alone. They elicited Ca2+-activated Cl currents in oocytes coexpressing these receptors with the G-activated form of phospholipase C (PLC)-2 but not with PLC-1. These currents were inhibited by pretreatment with PTX and coexpression of Gt, suggesting that -subunits of Gi/o protein activate PLC-2 and then cause intracellular Ca2+ mobilization. Our results indicate that -subunits of Gi/o protein participate in diverse intracellular signals, enhancement of Gs-coupled receptor-mediated responses, and intracellular Ca2+ mobilization. G protein-coupled receptor; cystic fibrosis transmembrane conductance regulator gene; cross talk; electrophysiology  相似文献   

4.
The activity of the voltage-sensitive K+ (Kv) channels varies as a function of the intracellular redox state and metabolism, and several Kv channels act as oxygen sensors. However, the mechanisms underlying the metabolic and redox regulation of these channels remain unclear. In this study we investigated the regulation of Kv channels by pyridine nucleotides. Heterologous expression of Kv1.5 in COS-7 cells led to the appearance of noninactivating currents. Inclusion of 0.1–1 mM NAD+ or 0.03–0.5 mM NADP+ in the internal solution of the patch pipette did not affect Kv currents. However, 0.5 and 1 mM NAD+ and 0.1 and 0.5 mM NADP+ prevented inactivation of Kv currents in cells transfected with Kv1.5 and Kv1.3 and shifted the voltage dependence of activation to depolarized potentials. The Kv-dependent inactivation of Kv currents was also decreased by internal pipette perfusion of the cell with 1 mM NAD+. The Kv1.5-Kv1.3 currents were unaffected by the internal application of 0.1 mM NADPH or 0.1 or 1 mM NADH. Excised inside-out patches from cells expressing Kv1.5-Kv1.3 showed transient single-channel activity. The mean open time and the open probability of these currents were increased by the inclusion of 1 mM NAD+ in the perfusate. These results suggest that NAD(P)+ prevents Kv-mediated inactivation of Kv currents and provide a novel mechanism by which pyridine nucleotides could regulate specific K+ currents as a function of the cellular redox state [NAD(P)H-to-NAD(P)+ ratio]. Shaker potassium ion channels; Kv subunits; patch clamp; aldo-keto reductase; COS-7 cells  相似文献   

5.
Epithelial ion transport disorders, including cystic fibrosis, adversely affect male reproductive function by nonobstructive mechanisms and by obstruction of the distal duct. Continuous cell lines that could be used to define ion transport mechanisms in this tissue are not readily available. In the present study, porcine vas deferens epithelial cells were isolated by standard techniques, and the cells spontaneously immortalized to form a porcine vas deferens epithelial cell line that we have titled PVD9902. Cells were maintained in continuous culture for >4 yr and 200 passages in a typical growth medium. Frozen stocks were generated, and thawed cells exhibited growth characteristics indistinguishable from their nonfrozen counterparts. Molecular and immunocytochemical studies confirmed the origin and epithelial nature of these cells. When seeded on permeable supports, PVD9902 cells grew as electrically tight (>6,000 ·cm2), confluent monolayers that responded to forskolin with an increase in short-circuit current (Isc; 8 ± 1 µA/cm2) that required Cl, HCO3, and Na+, and was partially sensitive to bumetanide. mRNA was expressed for a number of anion transporters, including CFTR, electrogenic Na+-HCO3 cotransporter 1b (NBCe1b), downregulated in adenoma, pendrin, and Cl/formate exchanger. Both forskolin and isoproterenol caused an increase in cellular cAMP levels. In addition, PVD9902 cell monolayers responded to physiological (i.e., adenosine, norepinephrine) and pharmacological [i.e., 5'-(N-ethylcarboxamido)adenosine, isoproterenol] agonists with increases in Isc. Unlike their freshly isolated counterparts, however, PVD9902 cells did not respond to glucocorticoid exposure with an increase in amiloride-sensitive Isc. RT-PCR analysis revealed the presence of both glucocorticoid and mineralocorticoid receptor mRNA as well as mRNA for the - and -subunits of the epithelia Na+ channels (- and -ENaC), but not -ENaC. Nonetheless, PVD9902 cells recapitulated most observations in freshly isolated cells and thus represent a powerful new tool to characterize mechanisms that contribute to male reproductive function. male reproductive tract; cystic fibrosis; epithelial Na+ channel expression; glucocorticoid receptor; adrenergic; vasopressin  相似文献   

6.
Innate immune response in CF airway epithelia: hyperinflammatory?   总被引:4,自引:0,他引:4  
The lack of functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in the apical membranes of CF airway epithelial cells abolishes cAMP-stimulated anion transport, and bacteria, eventually including Pseudomonas aeruginosa, bind to and accumulate in the mucus. Flagellin released from P. aeruginosa triggers airway epithelial Toll-like receptor 5 and subsequent NF-B signaling and production and release of proinflammatory cytokines that recruit neutrophils to the infected region. This response has been termed hyperinflammatory because so many neutrophils accumulate; a response that damages CF lung tissue. We first review the contradictory data both for and against the idea that epithelial cells exhibit larger-than-normal proinflammatory signaling in CF compared with non-CF cells and then review proposals that might explain how reduced CFTR function could activate such proinflammatory signaling. It is concluded that apparent exaggerated innate immune response of CF airway epithelial cells may have resulted not from direct effects of CFTR on cellular signaling or inflammatory mediator production but from indirect effects resulting from the absence of CFTRs apical membrane channel function. Thus, loss of Cl, HCO3, and glutathione secretion may lead to reduced volume and increased acidification and oxidation of the airway surface liquid. These changes concentrate proinflammatory mediators, reduce mucociliary clearance of bacteria and subsequently activate cellular signaling. Loss of apical CFTR will also hyperpolarize basolateral membrane potentials, potentially leading to increases in cytosolic [Ca2+], intracellular Ca2+, and NF-B signaling. This hyperinflammatory effect of CF on intracellular Ca2+ and NF-B signaling would be most prominently expressed during exposure to both P. aeruginosa and also endocrine, paracrine, or nervous agonists that activate Ca2+ signaling in the airway epithelia. Pseudomonas aeruginosa; Toll-like receptor; NF-B; oxidative stress; acidic airway surface liquid; calcium  相似文献   

7.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

8.
In past studies, we demonstrated regulation of CFTR Cl channel function by protein kinase C (PKC)- through the binding of PKC- to RACK1 (a receptor for activated C-kinase) and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In this study, we investigated the site of RACK1 binding on NHERF1 using solid-phase and solution binding assays and pulldown, immunoprecipitation, and 36Cl efflux experiments. Recombinant RACK1 binding to glutathione S-transferase (GST)-tagged PDZ1 domain of NHERF1 was 10-fold higher than its binding to GST-tagged PDZ2 domain of NHERF1. PDZ1 binds to RACK1 in a dose-dependent manner and vice versa, with similar binding constants of 1.67 and 1.26 µg, respectively. Interaction of the PDZ1 domain with RACK1 was not blocked by binding of activated PKC- to RACK1. A GST-tagged PDZ1 domain pulled down endogenous RACK1 from Calu-3 cell lysate. An internal 11-amino acid motif embedding the GYGF carboxylate binding loop of PDZ1 binds to RACK1, inhibits binding of recombinant NHERF1 and RACK1, pulls down endogenous RACK1 from Calu-3 cell lysate, and blocks coimmunoprecipitation of endogenous RACK1 with endogenous NHERF1 but does not affect cAMP-dependent activation of CFTR. A similar amino acid sequence in the PDZ2 domain did not bind RACK1. Our results indicate binding of Calu-3 RACK1 predominantly to the PDZ1 domain of NHERF1 at a site encompassing the GYGF loop of the PDZ1 domain and a site on RACK1 distinct from a PKC- binding site. CFTR activation by cAMP-generating agent is not affected by loss of RACK1-NHERF1 interaction. cystic fibrosis; cystic fibrosis transmembrane conductance regulator; protein-protein interaction; slot blot assay; pulldown; PDZ domain; chloride efflux; immunoprecipitation  相似文献   

9.
Previous studies from this laboratory demonstrated a role for protein kinase C (PKC) in the regulation of cAMP-dependent cystic fibrosis transmembrane regulator (CFTR) Cl channel function via binding of PKC to RACK1, a receptor for activated C kinase, and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In the present study, we investigated the role of RACK1 in regulating CFTR function in a Calu-3 airway epithelial cell line. Confocal microscopy and biotinylation of apical surface proteins demonstrate apical localization of RACK1 independent of actin. Mass spectrometric analysis of NHERF1 revealed copurification of tubulin, which, in in vitro binding assays, selectively binds to NHERF1, but not RACK1, via a PDZ1 domain. In binding and pulldown assays, we show direct binding of a PDZ2 domain to NHERF1, pulldown of endogenous NHERF1 by a PDZ2 domain, and inhibition of NHERF1-tubulin binding by a PDZ1 domain. Downregulation of RACK1 using double-stranded silencing RNA reduced the amount of RACK1 by 77.5% and apical expression of biotinylated CFTR by 87.4%. Expression of CFTR, NHERF1, and actin were not altered by treatment with siRACK1 or by nontargeting control silencing RNA, which, in addition, did not affect RACK1 expression. On the basis of these results, we model a RACK1 proteome consisting of PKC-RACK1-NHERF1-NHERF1-tubulin with a role in stable expression of CFTR in the apical plasma membrane of epithelial cells. silencing RNA; downregulation; biotinylation; tubulin; NHERF1; tailless cystic fibrosis transmembrane regulator; PDZ domain  相似文献   

10.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

11.
Stimulation of -adrenoceptors contributes to the relaxation of urinary bladder smooth muscle (UBSM) through activation of large-conductance Ca2+-activated K+ (BK) channels. We examined the mechanisms by which -adrenoceptor stimulation leads to an elevation of the activity of BK channels in UBSM. Depolarization from –70 to +10 mV evokes an inward L-type dihydropyridine-sensitive voltage-dependent Ca2+ channel (VDCC) current, followed by outward steady-state and transient BK current. In the presence of ryanodine, which blocks the transient BK currents, isoproterenol, a nonselective -adrenoceptor agonist, increased the VDCC current by 25% and the steady-state BK current by 30%. In the presence of the BK channel inhibitor iberiotoxin, isoproterenol did not cause activation of the remaining steady-state K+ current component. Decreasing Ca2+ influx through VDCC by nifedipine or depolarization to +80 mV suppressed the isoproterenol-induced activation of the steady-state BK current. Unlike forskolin, isoproterenol did not change significantly the open probability of single BK channels in the absence of Ca2+ sparks and with VDCC inhibited by nifedipine. Isoproterenol elevated Ca2+ spark (local intracellular Ca2+ release through ryanodine receptors of the sarcoplasmic reticulum) frequency and associated transient BK currents by 1.4-fold. The data support the concept that in UBSM -adrenoceptor stimulation activates BK channels by elevating Ca2+ influx through VDCC and by increasing Ca2+ sparks, but not through a Ca2+-independent mechanism. This study reveals key regulatory molecular and cellular mechanisms of -adrenergic regulation of BK channels in UBSM that could provide new targets for drugs in the treatment of bladder dysfunction. Ca2+ sparks; voltage-dependent Ca2+ channel; ryanodine receptor  相似文献   

12.
Activation of PLC-delta1 by Gi/o-coupled receptor agonists   总被引:1,自引:0,他引:1  
The mechanism of phospholipase (PLC)- activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, -opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or G13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (25%) and strongly inhibited by SKF-96365 (75%) and in cells expressing PLC-1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-1 antibody or nifedipine. We conclude that PLC-1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels. phospholipase C; G protein  相似文献   

13.
We have used normal rat kidney (NRK) fibroblasts as an in vitro model system to study cell transformation. These cells obtain a transformed phenotype upon stimulation with growth-modulating factors such as retinoic acid (RA) or transforming growth factor- (TGF-). Patch-clamp experiments showed that transformation is paralleled by a profound membrane depolarization from around –70 to –20 mV. This depolarization is caused by a compound in the medium conditioned by transformed NRK cells, which enhances intracellular Ca2+ levels and thereby activates Ca2+-dependent Cl channels. This compound was identified as prostaglandin F2 (PGF2) using electrospray ionization mass spectrometry. The active concentration in the medium conditioned by transformed NRK cells as determined using an enzyme immunoassay was 19.7 ± 2.5 nM (n = 6), compared with 1.5 ± 0.1 nM (n = 3) conditioned by nontransformed NRK cells. Externally added PGF2 was able to trigger NRK cells that had grown to density arrest to restart their proliferation. This proliferation was inhibited when the FP receptor (i.e., natural receptor for PGF2) was blocked by AL-8810. RA-induced phenotypic transformation of NRK cells was partially (25%) suppressed by AL-8810. Our results demonstrate that PGF2 acts as an autocrine enhancer and paracrine inducer of cell transformation and suggest that it may play a crucial role in carcinogenesis in general. membrane potential; intracellular calcium; mass spectrometry; FP receptor  相似文献   

14.
Previous studieshave indicated a role of the actin cytoskeleton in the regulation ofthe cystic fibrosis transmembrane conductance regulator (CFTR) ionchannel. However, the exact molecular nature of this regulation isstill largely unknown. In this report human epithelial CFTR wasexpressed in human melanoma cells genetically devoid of the filaminhomologue actin-cross-linking protein ABP-280 [ABP()]. cAMP stimulation of ABP() cells orcells genetically rescued with ABP-280 cDNA [ABP(+)] waswithout effect on whole cell Cl currents. InABP() cells expressing CFTR, cAMP was also without effect onCl conductance. In contrast, cAMP induced a 10-foldincrease in the diphenylamine-2-carboxylate (DPC)-sensitive whole cellCl currents of ABP(+)/CFTR(+) cells. Further, incells expressing both CFTR and a truncated form of ABP-280 unable tocross-link actin filaments, cAMP was also without effect on CFTRactivation. Dialysis of ABP-280 or filamin through the patch pipette,however, resulted in a DPC-inhibitable increase in the whole cellcurrents of ABP()/CFTR(+) cells. At the single-channel level,protein kinase A plus ATP activated single Clchannels only in excised patches from ABP(+)/CFTR(+) cells.Furthermore, filamin alone also induced Cl channelactivity in excised patches of ABP()/CFTR(+) cells. The presentdata indicate that an organized actin cytoskeleton is required forcAMP-dependent activation of CFTR.

  相似文献   

15.
Secretin stimulates ductal secretion by activation of cAMP PKA CFTR Cl/HCO3 exchanger in cholangiocytes. We evaluated the expression of 2A-, 2B-, and 2C-adrenergic receptors in cholangiocytes and the effects of the selective 2-adrenergic agonist UK 14,304, on basal and secretin-stimulated ductal secretion. In normal rats, we evaluated the effect of UK 14,304 on bile and bicarbonate secretion. In bile duct-ligated (BDL) rats, we evaluated the effect of UK 14,304 on basal and secretin-stimulated 1) bile and bicarbonate secretion; 2) duct secretion in intrahepatic bile duct units (IBDU) in the absence or presence of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na+/H+ exchanger isoform NHE3; and 3) cAMP levels, PKA activity, Cl efflux, and Cl/HCO3 exchanger activity in purified cholangiocytes. 2-Adrenergic receptors were expressed by all cholangiocytes in normal and BDL liver sections. UK 14,304 did not change bile and bicarbonate secretion of normal rats. In BDL rats, UK 14,304 inhibited secretin-stimulated 1) bile and bicarbonate secretion, 2) expansion of IBDU luminal spaces, and 3) cAMP levels, PKA activity, Cl efflux, and Cl/HCO3 exchanger activity in cholangiocytes. There was decreased lumen size after removal of secretin in IBDU pretreated with UK 14,304. In IBDU pretreated with EIPA, there was no significant decrease in luminal space after removal of secretin in either the absence or presence of UK 14,304. The inhibitory effect of UK 14,304 on ductal secretion is not mediated by the apical cholangiocyte NHE3. 2-Adrenergic receptors play a role in counterregulating enhanced ductal secretion associated with cholangiocyte proliferation in chronic cholestatic liver diseases. bicarbonate secretion; chloride efflux; gastrointestinal hormones; intrahepatic biliary epithelium; protein kinase A  相似文献   

16.
The carboxy terminus (CT) of the colonic H+-K+-ATPase is required for stable assembly with the -subunit, translocation to the plasma membrane, and efficient function of the transporter. To identify protein-protein interactions involved in the localization and function of HK2, we selected 84 amino acids in the CT of the -subunit of mouse colonic H+-K+-ATPase (CT-HK2) as the bait in a yeast two-hybrid screen of a mouse kidney cDNA library. The longest identified clone was CD63. To characterize the interaction of CT-HK2 with CD63, recombinant CT-HK2 and CD63 were synthesized in vitro and incubated, and complexes were immunoprecipitated. CT-HK2 protein (but not CT-HK1) coprecipitated with CD63, confirming stable assembly of HK2 with CD63. In HEK-293 transfected with HK2 plus 1-Na+-K+-ATPase, suppression of CD63 by RNA interference increased cell surface expression of HK2/NK1 and 86Rb+ uptake. These studies demonstrate that CD63 participates in the regulation of the abundance of the HK2-NK1 complex in the cell membrane. protein assembly; cell surface localization  相似文献   

17.
Several related isoforms of p38MAPK have been identified and cloned in many species. Although they all contain the dual phosphorylation motif TGY, the expression of these isoforms is not ubiquitous. p38 and -2 are ubiquitously expressed, whereas p38 and - appear to have more restricted expression. Because there is evidence for selective activation by upstream kinases and selective preference for downstream substrates, the functions of these conserved proteins is still incompletely understood. We have demonstrated that the renal mesangial cell expresses the mRNA for all the isoforms of p38MAPK, with p38 mRNA expressed at the highest level, followed by p38 and the lowest levels of expression by p382 and -. To determine the functional effects of these proteins on interleukin (IL)-1-induced inducible nitric oxide synthase (iNOS) expression, we transduced TAT-p38 chimeric proteins into renal mesangial cells and assessed the effects of wild-type and mutant p38 isoforms on ligand induced iNOS expression. We show that whereas p38 and - had minimal effects on iNOS expression, p38 and -2 significantly altered its expression. p38 mutant and p382 wild-type dose dependently inhibited IL-1-induced iNOS expression. These data suggest that p38 and 2 have reciprocal effects on iNOS expression in the mesangial cell, and these observations may have important consequences for the development of selective inhibitors targeting the p38MAPK family of proteins. TAT proteins; p38 MAPK; inducible nitric oxide synthase; mesangial cell; interleukin-1  相似文献   

18.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

19.
Wortmannin is a potent inhibitor ofphosphatidylinositol 3-kinase (PI3K) and membrane trafficking in manycells. To test the hypothesis that cystic fibrosis transmembraneconductance regulator (CFTR) traffics into and out of the plasmamembrane during cAMP-stimulated epithelial Clsecretion, we have studied the effects of wortmannin onforskolin-stimulated Cl secretion by the humancolonic cell line T84. At the PI3K inhibitory concentration of 100 nM,wortmannin did not affect significantly forskolin-stimulatedCl secretion measured as short-circuit current(ISC). However, 500 nM wortmannin significantlyinhibited forskolin-stimulated ISC. cAMP activationof apical membrane CFTR Cl channels in-toxin-permeabilized monolayers was not reduced by 500 nMwortmannin, suggesting that inhibition of other transporters accountsfor the observed reduction in T84 Cl secretion.Forskolin inhibits apical endocytosis of horseradish peroxidase (HRP),but wortmannin did not alter forskolin inhibition of apical HRPendocytosis. In the absence of forskolin, wortmannin stimulated HRPendocytosis significantly. We conclude that, in T84 cells, apical fluidphase endocytosis is not dependent on PI3K activity and that CFTR doesnot recycle through a PI3K-dependent and wortmannin-sensitive membrane compartment.

  相似文献   

20.
The Na+/K+-ATPase (NKA) is the main route for Na+ extrusion from cardiac myocytes. Different NKA -subunit isoforms are present in the heart. NKA-1 is predominant, although there is a variable amount of NKA-2 in adult ventricular myocytes of most species. It has been proposed that NKA-2 is localized mainly in T-tubules (TT), where it could regulate local Na+/Ca2+ exchange and thus cardiac myocyte Ca2+. However, there is controversy as to where NKA-1 vs. NKA-2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (IPump) measurements and the different ouabain sensitivity of NKA-1 (low) and NKA-2 (high) in rat heart. Ouabain-dependent IPump inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-2, K1/2 = 0.38 ± 0.16 µM) that accounts for 29.5 ± 1.3% of IPump and a low-affinity isoform (NKA-1, K1/2 = 141 ± 17 µM) that accounts for 70.5% of IPump. Detubulation decreased cell capacitance from 164 ± 6 to 120 ± 8 pF and reduced IPump density from 1.24 ± 0.05 to 1.02 ± 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-2 accounted for only 18.2 ± 1.1% of IPump. Thus, 63% of IPump generated by NKA-2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-2/NKA-1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-2 is 4.5 times higher in the T-tubules vs. ESL, whereas NKA-1 is almost uniformly distributed between the TT and ESL. T-tubules; Na+/K+ pump current; ouabain; external sarcolemma; detubulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号