首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell》2023,186(10):2160-2175.e17
  1. Download : Download high-res image (313KB)
  2. Download : Download full-size image
  相似文献   

2.
Serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin (5-HT) and is a target for antidepressant drugs and psychostimulants. It is a member of a large family of neurotransmitter and amino acid transporters. A recent study using site-directed cysteine modification identified a helical region of the transporter with high accessibility to the cytoplasm. Subsequently, the high resolution structure of LeuT, a prokaryotic homologue, showed that the residues corresponding to this helical region are part of the fifth transmembrane domain. The accessibility of these positions is now shown to depend on conformational changes corresponding to interconversion of SERT between two forms that face the extracellular medium and the cytoplasm, respectively. Binding of the extracellular inhibitor cocaine decreased accessibility at these positions, whereas 5-HT, the transported substrate, increased it. The effect of 5-HT required the simultaneous presence of Na+ and Cl-, which are transported into the cell together (symported) with 5-HT. In light of the LeuT structure, these results begin to define the pathway through which 5-HT diffuses between its binding site and the cytoplasm. They also confirm a prediction of the alternating access model for transport, namely, that all symported substrates must bind together before translocation.  相似文献   

3.
The gamma-aminobutyric acid (GABA) transporter GAT-1 is a prototype of neurotransmitter transporters that maintain low synaptic levels of the transmitter. Transport by GAT-1 is sensitive to the polar sulfhydryl reagent 2-aminoethyl methanethiosulfonate. Following replacement of endogenous cysteines to other residues by site-directed mutagenesis, we have identified cysteine 399 as the major determinant of the sensitivity of the transporter to sulfhydryl modification. Cysteine-399 is located in the intracellular loop connecting putative transmembrane domains eight and nine. Binding of both sodium and chloride leads to a reduced sensitivity to sulfhydryl reagents, whereas subsequent binding of GABA increases it. Strikingly binding of the nontransportable GABA analogue SKF100330A gives rise to a marked protection against sulfhydryl modification. These effects were not observed in C399S transporters. Under standard conditions GAT-1 is almost insensitive toward the impermeant 2-(trimethylammonium)ethyl methanethiosulfonate. However, in a chloride-free medium, addition of SKF100330A renders wild type GAT-1, but not C399S, very sensitive to this impermeant reagent. These observations indicate that the accessibility of cysteine 399 is highly dependent on the conformation of GAT-1. Consequently, topological assignments based on accessibility of endogeneous or engineered cysteines to small polar sulfhydryl reagents need to be interpreted with extreme caution.  相似文献   

4.
Removal of glutamate from the synaptic cleft by (Na(+) + K(+))-coupled transporters prevents neurotoxicity due to elevated concentrations of the transmitter. These transporters exhibit an unusual topology, including two reentrant loops. Reentrant loop II plays a pivotal role in coupling ion and glutamate fluxes. Here we used cysteine-scanning mutagenesis of the GLT-1 transporter to test the idea that this loop undergoes conformational changes following sodium and substrate binding. 15 of 22 consecutive single cysteine mutants in the stretch between Gly-422 and Ser-443 exhibited 30-100% of the transport activity of the cysteine-less transporter when expressed in HeLa cells. The transport activity of 11 of the 15 active mutants including five consecutive residues in the ascending limb was inhibited by small hydrophilic methanethiosulfonate reagents. The sensitivity of seven cysteine mutants, including A438C and S440C, to the reagents was significantly reduced by sodium ions, but the opposite was true for A439C. The non-transportable analogue dihydrokainate protected at almost all positions throughout the loop, and at two of the positions, the analogue protected even in the absence of sodium. Our results indicate that reentrant loop II forms part of an aqueous pore, the access of which is blocked by the glutamate analogue dihydrokainate, and that sodium influences the conformation of this pore-loop.  相似文献   

5.
The (Na+ + Cl-)-coupled gamma-aminobutyric acid (GABA) transporter GAT-1 keeps synaptic levels of this neurotransmitter low and thereby enables efficient GABA-ergic transmission. Extracellular loops (III, IV, and V) have been shown to contain determinants for GABA selectivity and affinity. Here we analyze the role of extracellular loop IV in transport by cysteine scanning mutagenesis. Fourteen residues of this loop have been replaced by cysteine. GABA transport by eight of the fourteen mutants is markedly more sensitive to inhibition by membrane-impermeant methane thiosulfate reagents than wild-type. Mutant A364C has high activity and is potently inhibited by the sulfhydryl reagent. GABA transport by the A364C/C74A double mutant, where the only externally accessible cysteine residue of the wild-type has been replaced by alanine, is also highly sensitive to the sulfhydryl reagents. Maximal sensitivity is observed in the presence of the cosubstrates sodium and chloride. A marked protection is afforded by GABA, provided sodium is present. This protection is also observed at 4 degrees C. The non-transportable analogue SKF100330A also protects the double mutant against sulfhydryl modification in the presence of sodium but has the opposite effect in its absence. Electrophysiological analysis shows that upon sulfhydryl modification of this mutant, GABA can no longer induce transport currents. The voltage dependence of the transient currents indicates an increased apparent affinity for sodium. Moreover, GABA is unable to suppress the transient currents. Our results indicate that part of extracellular loop IV is conformationally sensitive, and its modification selectively abolishes the interaction of the transporter with GABA.  相似文献   

6.
Plasma serotonin levels and the platelet serotonin transporter   总被引:1,自引:0,他引:1  
Serotonin (5HT) is a platelet-stored vasoconstrictor. Altered concentrations of circulating 5HT are implicated in several pathologic conditions, including hypertension. The actions of 5HT are mediated by different types of receptors and terminated by a single 5HT transporter (SERT). Therefore, SERT is a major mechanism that regulates plasma 5HT levels to prevent vasoconstriction and thereby secure a stable blood flow. In this study, the response of platelet SERT to the plasma 5HT levels was examined within two models: (i) in subjects with chronic hypertension or normotension; (ii) on platelets isolated from normotensive subjects and pretreated with 5HT at various concentrations. The platelet 5HT uptake rates were lower during hypertension due to a decrease in Vmax with a similar Km; also, the decrease in Vmax was primarily due to a decrease in the density of SERT on the platelet membrane, with no change in whole cell expression. Additionally, while the platelet 5HT content decreased 33%, the plasma 5HT content increased 33%. Furthermore, exogenous 5HT altered the 5HT uptake rates by changing the density of SERT molecules on the plasma membrane in a biphasic manner. Therefore, we hypothesize that in a hypertensive state, the elevated plasma 5HT levels induces a loss in 5HT uptake function in platelets via a decrease in the density of SERT molecules on the plasma membrane. Through the feedback effect of this proposed mechanism, plasma 5HT controls its own concentration levels by modulating the uptake properties of platelet SERT.  相似文献   

7.
Na(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.  相似文献   

8.
Cellular protein kinases, phosphatases, and other serotonin transporter (SERT) interacting proteins participate in several signaling mechanisms regulating SERT activity. The molecular mechanisms of protein kinase G (PKG)-mediated SERT regulation and the site of transporter phosphorylation were investigated. Treatment of rat midbrain synaptosomes with 8-bromo-cGMP increased SERT activity, and the increase was selectively blocked by PKG inhibitors. The V(max) value for serotonin (5-HT) transport increased following cGMP treatment. However, surface biotinylation studies showed no change in SERT surface abundance following PKG activation. (32)P metabolic labeling experiments showed increased SERT phosphorylation in the presence of cGMP that was abolished by selectively inhibiting PKG. Phosphoamino acid analysis revealed that cGMP-stimulated native SERT phosphorylation occurred only on threonine residues. When added to CHO-1 cells expressing SERT, 8-bromo-cGMP stimulated 5-HT transport and SERT phosphorylation. Mutation of SERT threonine 276 to alanine completely abolished cGMP-mediated stimulation of 5-HT transport and SERT phosphorylation. Although the T276A mutation had no significant effect on 5-HT transport or SERT protein expression, mutation to aspartate (T276D) increased the level of 5-HT uptake to that of cGMP-stimulated 5-HT uptake in wild-type SERT-expressing cells and was no longer sensitive to cGMP. These findings provide the first identification of a phosphorylation site in SERT and demonstrate that phosphorylation of Thr-276 is required for cGMP-mediated SERT regulation. They also constitute the first evidence that in the central nervous system PKG activation stimulates endogenous SERT activity by a trafficking-independent mechanism.  相似文献   

9.
Zhang X  Qu S 《PloS one》2012,7(1):e30961

Background

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter which is a key element in the termination of the synaptic actions of glutamate. It serves to keep the extracellular glutamate concentration below neurotoxic level. However the functional significance and the change of accessibility of residues in transmembrane domain (TM) 5 of the EAAT1 are not clear yet.

Methodology/Principal Findings

We used cysteine mutagenesis with treatments with membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] to investigate the change of accessibility of TM5. Cysteine mutants were introduced from position 291 to 300 of the cysteine-less version of EAAT1. We checked the activity and kinetic parameters of the mutants before and after treatments with MTSET, furthermore we analyzed the effect of the substrate and blocker on the inhibition of the cysteine mutants by MTSET. Inhibition of transport by MTSET was observed in the mutants L296C, I297C and G299C, while the activity of K300C got higher after exposure to MTSET. Vmax of L296C and G299C got lower while that of K300C got higher after treated by MTSET. The L296C, G299C, K300C single cysteine mutants showed a conformationally sensitive reactivity pattern. The sensitivity of L296C to MTSET was potentiated by glutamate and TBOA,but the sensitivity of G299C to MTSET was potentiated only by TBOA.

Conclusions/Significance

All these facts suggest that the accessibility of some positions of the external part of the TM5 is conformationally sensitive during the transport cycle. Our results indicate that some residues of TM5 take part in the transport pathway during the transport cycle.  相似文献   

10.
The serotonin transporter (SERT) is an integral membrane protein responsible for the clearance of serotonin from the synaptic cleft following the release of the neurotransmitter. SERT plays a prominent role in the regulation of serotoninergic neurotransmission and is a molecular target for multiple antidepressants as well as substances of abuse. Here we show that SERT associates with lipid rafts in both heterologous expression systems and rat brain and that the inclusion of the transporter into lipid microdomains is critical for serotonin uptake activity. SERT is present in a subpopulation of lipid rafts, which is soluble in Triton X-100 but insoluble in other non-ionic detergents such as Brij 58. Disaggregation of lipid rafts upon depletion of cellular cholesterol results in a decrease of serotonin transport capacity (V(max)), due to the reduction of turnover number of serotonin transport. Our data suggest that the association of SERT with lipid rafts may represent a mechanism for regulating the transporter activity and, consequently, serotoninergic signaling in the central nervous system, through the modulation of the cholesterol content in the cell membrane. Furthermore, SERT-containing rafts are detected in both intracellular and cell surface fractions, suggesting that raft association may be important for trafficking and targeting of SERT.  相似文献   

11.
Shafer AM  Nakaie CR  Deupi X  Bennett VJ  Voss JC 《Peptides》2008,29(11):1919-1929
To probe the binding of a peptide agonist to a G-protein coupled receptor in native membranes, the spin-labeled amino acid analogue 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC) was substituted at either position 4 or 9 within the substance P peptide (RPKPQQFFGLM-NH2), a potent agonist of the neurokinin-1 receptor. The affinity of the 4-TOAC analog is comparable to the native peptide while the affinity of the 9-TOAC derivative is approximately 250-fold lower. Both peptides activate receptor signaling, though the potency of the 9-TOAC peptide is substantially lower. The utility of these modified ligands for reporting conformational dynamics during the neurokinin-1 receptor activation was explored using EPR spectroscopy, which can determine the real-time dynamics of the TOAC nitroxides in solution. While the binding of both the 4-TOAC substance P and 9-TOAC substance P peptides to isolated cell membranes containing the neurokinin-1 receptor is detected, a bound signal for the 9-TOAC peptide is only obtained under conditions that maintain the receptor in its high-affinity binding state. In contrast, 4-TOAC substance P binding is observed by solution EPR under both low- and high-affinity receptor states, with evidence of a more strongly immobilized peptide in the presence of GDP. In addition, to better understand the conformational consequences of TOAC substitution into substance P as it relates to receptor binding and activation, atomistic models for both the 4- and 9-TOAC versions of the peptide were constructed, and the molecular dynamics calculated via simulated annealing to explore the influence of the TOAC substitutions on backbone structure.  相似文献   

12.
The serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) catalyzes the movement of 5HT across cellular membranes. In the brain, SERT clears 5HT from extracellular spaces, modulating the strength and duration of serotonergic signaling. SERT is also an important pharmacological target for antidepressants and drugs of abuse. We have studied the flux of radio-labeled 5HT through the transporter stably expressed in HEK-293 cells. Analysis of the time course of net transport, the equilibrium 5HT gradient sustained, and the ratio of the unidirectional influx to efflux of 5HT indicate that mechanistically, human SERT functions as a 5HT channel rather than a classical carrier. This is especially apparent at relatively high [5HT](out) (> or =10 microM), but is not restricted to this regime of external 5HT.  相似文献   

13.
The Na+/proline transporter PutP of Escherichia coli is a member of a large family of Na+/substrate symporters. Previous work on PutP suggests an involvement of the region ranging from Asp-55 to Gly-58 in binding of Na+ and/or proline (Pirch, T., Quick, M., Nietschke, M., Langkamp, M., Jung, H. (2002) J. Biol. Chem. 277, 8790-8796). In this study, a complete Cys scanning mutagenesis of transmembrane domain II (TM II) of PutP was performed to further elucidate the role of the TM in the transport process. Strong defects of PutP function were observed upon substitution of Ala-48, Ala-53, Trp-59, and Gly-63 by Cys in addition to the previously characterized residues Asp-55, Ser-57, and Gly-58. However, except for Asp-55 none of these residues proved essential for function. The activity of eight mutants was sensitive to N-ethylmaleimide inhibition with the sensitive positions clustering predominantly on a hydrophilic face in the cytoplasmic half of TM II. The same face was also highly accessible to the bulky sulfhydryl reagent fluorescein 5-maleimide in randomly oriented membrane vesicles, suggesting an unrestricted accessibility of the corresponding amino acid positions via an aqueous pathway. Na+ stimulated the reactivity of Cys toward fluorescein 5-maleimide at two positions while proline inhibited reaction of the sulfhydryl group at nine positions. Taken together, the results demonstrate that TM II of PutP is of particular functional importance. It is proposed that hydrophilic residues in the cytoplasmic half of TM II participate in the formation of an aqueous cavity in the membrane that allows Na+ and/or proline binding to residues located in the middle of the TM (e.g. Asp-55 and Ser-57). In addition, the data indicate that TM II participates in Na+- and proline-induced conformational alterations.  相似文献   

14.
15.
16.
Quick MW 《Neuron》2003,40(3):537-549
Serotonin transporters (SERTs), sites of psychostimulant action, display multiple conducting states in expression systems. These include a substrate-independent transient conductance, two separate substrate-independent leak conductances associated with Na(+) and H(+), and a substrate-dependent conductance of variable stoichiometry, which exceeds that predicted from electroneutral substrate transport. The present data show that the SNARE protein syntaxin 1A binds the N-terminal tail of SERT, and this interaction regulates two SERT-conducting states. First, substrate-induced currents are absent because Na(+) flux becomes strictly coupled to 5HT transport. Second, Na(+)-mediated leak currents are eliminated. These two SERT-conducting states are present endogenously in thalamocortical neurons, act to depolarize the membrane potential, and are modulated by molecules that disrupt SERT and syntaxin 1A interactions. These data show that protein interactions govern SERT activity and suggest that both cell excitability and psychostimulant-mediated effects will be dependent upon the state of association among SERT and its interacting partners.  相似文献   

17.
18.
Rasmussen SG  Gether U 《Biochemistry》2005,44(9):3494-3505
To establish a purification procedure for the human serotonin transporter (hSERT) we expressed in Sf9 insect cells an epitope-tagged version of the transporter containing a FLAG epitope at the N-terminus and a polyhistidine tail at the C-terminus (FLAG-hSERT-12H). For purification, the transporter was solubilized in digitonin followed by nickel affinity and subsequent concanavalin A chromatography. Using this procedure we were able to obtain an overall purification of 700-fold and a yield of approximately 0.1 mg/L of cell culture. The purified transporter displayed pharmacological properties similar to those of hSERT expressed in native tissues and in transfected cell lines. Fluorescent labeling of the purified transporter with the thiol-reactive fluorophore nitrobenxoxadiazol-iodoacetamide (IANBD) and Texas Red bromoacetamide preserved the pharmacological profile of FLAG-hSERT-12H. Collisional quenching experiments revealed that the aqueous quencher iodide was able to cause marked quenching of the fluorescence of the IANBD labeled transporter with a K(SV) of 3.4 +/- 0.10 M(-)(1). In a mutant transporter with five cysteines mutated (5CysKO) we observed a significant reduction in this quenching (K(SV) = 2.1 +/- 0.16 M(-)(1), p < 0.01). This reduction was most likely due to labeling of (109)Cys since mutation of this cysteine alone resulted in a reduction in collisional quenching that was similar to that observed with 5CysKO (K(SV) = 2.2 +/- 0.15 M(-)(1)). These data suggest that labeling of (109)Cys contributes substantially to the overall fluorescence of IANBD labeled FLAG-hSERT-12H. On the basis of these data we infer that (109)Cys is embedded in a mixed hydrophobic/hydrophilic environment at the external ends of transmembrane segments 1 and 2. Further use of fluorescent techniques on purified hSERT should prove useful in future studies aimed at understanding the molecular structure and function of Na(+)/Cl(-)-dependent neurotransmitter transporters.  相似文献   

19.
《Biophysical journal》2022,121(5):715-730
The serotonin transporter (SERT) initiates the reuptake of extracellular serotonin in the synapse to terminate neurotransmission. The cryogenic electron microscopy structures of SERT bound to ibogaine and the physiological substrate serotonin resolved in different states have provided a glimpse of the functional conformations at atomistic resolution. However, the conformational dynamics and structural transitions to intermediate states are not fully understood. Furthermore, the molecular basis of how serotonin is recognized and transported remains unclear. In this study, we performed unbiased microsecond-long simulations of the human SERT to investigate the structural dynamics to various intermediate states and elucidated the complete substrate import pathway. Using Markov state models, we characterized a sequential order of conformational-driven ion-coupled substrate binding and transport events and calculated the free energy barriers of conformation transitions associated with the import mechanism. We find that the transition from the occluded to inward-facing state is the rate-limiting step for substrate import and that the substrate decreases the free energy barriers to achieve the inward-facing state. Our study provides insights on the molecular basis of dynamics-driven ion-substrate recognition and transport of SERT that can serve as a model for other closely related neurotransmitter transporters.  相似文献   

20.
VNTR polymorphisms of the serotonin transporter (hSERT) and dopamine transporter (DAT1) gene were studied in male opiate addicts. Samples of ethnic Russians and ethnic Tatars did not differ in genotype and allele frequencies. Homozygosity at hSERT (especially 10/10) was associated with early opiate addiction, while genotype 12/10 proved to be protective. In the case of DAT1, genotype 9/9 was associated with early opiate addiction. The combination of hSERT genotype 10/10 with DAT1 genotype 10/10 was shown to be a risk factor of opiate abuse under 16 years of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号