首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that phosphorylation of myelin basic protein (MBP) in CNS is catalyzed by protein kinase C (PKC). In order to demonstrate that PKC in the myelin phosphorylates MBP, PKC was partially purified from rat CNS myelin by solubilization with Triton X-100 followed by a DEAE-cellulose column. MBP and histone III-S were phosphorylated in the presence of Ca2+ and phospholipid by rat myelin PKC. High voltage electrophoresis revealed that the phosphoamino acids in MBP by this kinase was serine residue, which is known to be the amino acid phosphorylated by PKC. The activity of PKC extracted from myelin was inhibited by the addition of psychosine to the incubation mixture. To confirm the presence of PKC molecule and to identify the isoform of PKC in the myelin, the solubilized myelin fraction was applied on SDS-PAGE, transferred to a nitrocellulose sheet and stained with anti-PKC monoclonal antibodies. Rat CNS myelin contained the PKC of about 80 kDa (intact PKC), and no proteolytic fragments were observed. PKC isozymes in myelin were type II and III. A developmental study from 14 to 42 postnatal days showed that PKC activity in CNS myelin seemed to parallel the deposition of myelin protein.  相似文献   

2.
Purified myelin fraction isolated from rat brain white matter contained Mg2+-dependent protein kinase capable of phosphorylation of myelin basic proteins. The Mg2+-supported kinase was markedly stimulated (two- to fivefold) by micromolar concentrations of free Ca2+ with and without Triton X-100 in the assay, the degree of stimulation being greater with the detergent present. Cyclic AMP, on the other hand, failed to show any effect on phosphorylation of myelin in the absence of Triton X-100 and in the presence of Triton caused only 25–30% stimulation. The phosphorylation reaction was temperature dependent and exhibited a pH optimum at pH 6.5. Apparent affinity toward MgATP2? was found to be about 70 μm and Ca2+ had no effect on this parameter. Dependence on MgCl2 of myelin phosphorylation indicated the presence of high- and low-affinity sites toward Mg2+; Ca2+ appeared to influence the low-affinity site. Maximal level of phosphorylation was attained by 10–15 min at 30 °C and it declined at longer incubation times due to phosphatase activity present in the preparation. Stimulatory effect of Ca2+ on phosphorylation was not due to inhibition of phosphatase activity. Dephosphorylation experiments showed that neither cyclic AMP nor Ca2+ influenced the myelin phosphatase activity. Autoradiographic analysis revealed that phosphorylation of myelin basic proteins accounted for nearly 90% of total myelin phosphorylation. This was supported by the observation that the HCl extract of myelin contained 85% of total activity and comigrated with purified myelin basic proteins. Basal and Ca2+-stimulated phosphorylation of basic proteins were due to phosphorylation of serines mainly, although threonine was phosphorylated to a minor extent. Within myelin, Ca2+ and cyclic AMP kinases are differentially bound. It appears that the myelin kinase (studied in vitro) is primarily influenced by Ca2+ rather than cyclic AMP. Inhibitors (Type I and Type II) of cyclic nucleotide-stimulated protein kinases had no effect on the Ca2+-stimulated phosphorylation although basal and cyclic AMP-stimulated phosphorylation was inhibited, indicating that the Ca2+ kinase is a separate and distinct enzyme from the cyclic AMP-stimulated and basal kinase(s). Also, leupeptin, a protease inhibitor, did not influence basal, cyclic AMP-stimulated, or Ca2+-stimulated myelin phosphorylation, indicating that under the conditions used protease(s) did not alter the myelin kinase activity. The potential significance of phosphorylation of myelin basic proteins and the stimulatory action of Ca2+ on this reaction are discussed.  相似文献   

3.
The incubation of sciatic nerve slices in Krebs Ringer bicarbonate (KRB) buffer (pH 7.4) at 37°C, or the incubation of freshly isolated myelin in ammonium bicarbonate buffer (pH 8), resulted in the generation of a 24kDa protein with a concomitant decrease of PO protein. The conversion of PO into 24kDa protein was blocked by heating isolated myelin at 100°C for 5 min suggesting that the reaction is enzyme mediated. Inclusion of the protease inhibitors and chelating agent to isolated myelin did not prevent the formation of 24kDa protein. Similarly, addition of CaCl2 to isolated myelin did not accentuate the formation of 24kDa protein suggesting that the conversion of PO into 24kDa protein may not be due to Ca2+ activated protease. It is postulated that the formation of 24kDa protein may be due to neutral protease and/or metalloproteinase associated with the PNS myelin. 24kDa protein was purified and characterized. The N-terminal sequence of 1–17 amino acid residues of 24kDa protein was identical to PO. 24kDa protein was immunostained and immunoprecipitated with anti-PO antiserum indicating the immunological similarities between PO and 24kDa protein. Labeling of 24kDa protein with [35S]methionine provided evidence that PO may be in all probability cleaved between Met-168 and Met-193. Further studies were carried out to demonstrate that 24kDa protein was phosphorylated, glycosylated and acylated like PO. Phosphorylation of 24kDa protein in the nerve slices was increased five-fold by phorbol esters and phosphoserine was the only phosphoamino acid identified after partial acid hydrolysis of 24kDa protein. These results suggested that serine residue phosphorylated by protein kinase C may be located in amino acid residues 1-168. 24kDa protein was stained with periodic Schiff reagent. In addition, 24kDa protein was fucosylated and the fucosylation of 24kDa protein was inhibited (70%) by tunicamycin, providing evidence that it is N-glycosylated. Recently, it was demonstrated that both PO and 24kDa protein were fatty acylated with [3H]palmitic acid in the nerve slices and fatty acids are covalently linked to these proteins (Agrawal, H.C. and Agrawal, D. 1989, Biochem. J. 263:173–177). The time course of inhibition of acylation by cycloheximide of 24kDa protein was identical to PO. Cycloheximide inhibited acylation of PO and 24kDa protein by 61% and 58% respectively, whereas, monensin had little affect on the fatty acylation of these proteins. Less [3H]palmitic acid and14C-amino acids were incorporated into 24kDa protein when compared to PO between 5–30 min after incubation of the nerve slices. However, more radioactivity was incorporated into 24kDa protein after 60 min when compared to PO under identical conditions. These results provided evidence of a precursor-product relationship between PO and 24kDa protein. Therefore, PO may be cleaved into 24kDa protein in the myelin membrane following its acylation and glycosylation in the Schwann cells.  相似文献   

4.
The major interaction site for tumor-promoting phorbol esters is the calcium-activated, phospholipid-dependent protein kinase (protein kinase C), a key-element in signal transduction. Binding of phorbol esters results in enzyme activation which mediates, at least in part, the action of these agents. We have investigated the effects of tumor promoter chloroform on protein kinase C activity. Like thrombin and 12-O-tetradecanoylphorbol-13-acetate (TPA), chloroform was able to activate protein kinase C in intact rabbit platelets. In addition, chloroform stimulated enzyme activity as well as TPA binding capacity in cell-free system. Scatchard analysis of the data has shown that chloroform increased the number of phorbol ester binding sites. Structurally related compounds, carbon tetrachloride and methylene chloride, activated the enzyme similarly.  相似文献   

5.
We have investigated the effect of chloroform on the phosphorylation of myelin basic proteins because tumor-promoting agents such as phorbol esters and chloroform are known to enhance the activity of protein kinase C. We report that the presence of chloroform, at a concentration known to enhance protein kinase C activity, stimulated the phosphorylation of myelin basic proteins 15-17 fold over control conditions. The phosphorylation of a 50 kiloDalton myelin protein was also stimulated but to a lesser extent. The concentration of chloroform required for the maximal phosphorylation of myelin basic proteins and the 50 kiloDalton protein was approximately 2% (v/v).  相似文献   

6.
When highly purified myelin from rat sciatic nerve was incubated with [γ-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [γ-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3′,5′-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing.From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

7.
Phosphorylation of microtubule-associated protein 2 (MAP 2) by Ca2+-, calmodulin-dependent protein kinase II (protein kinase II) inhibited the actin filament cross-linking activity of MAP 2. This inhibition required the presence of ATP, Mg2+, Ca2+ and calmodulin. The minimal concentration of MAP 2 required for gel formation of actin filaments was increased with increasing amounts of phosphate incorporated into MAP 2, and the phosphorylated MAP 2, into which 10.3 mol of phosphate/mol of protein had been incorporated, did not cause actin filaments to gel under the experimental conditions used. The phosphorylation of MAP 2 by Ca2+-, phospholipid-dependent protein kinase (protein kinase C) and cAMP-dependent protein kinase also inhibited the actin filament cross-linking activity of MAP 2. The extent and rate of phosphorylation of MAP 2 by protein kinase II were higher than those of the phosphorylation by protein kinase C and cAMP-dependent protein kinase. The interaction of actin filaments with MAP 2 was inhibited more by the actions of protein kinase II and protein kinase C than by cAMP-dependent protein kinase. The actin filament cross-linking activity of MAP 2 phosphorylated either by protein kinase II, cAMP-dependent protein kinase or protein kinase C was retrieved when phosphorylated MAP 2 was treated by protein phosphatase. These results indicate that the interaction of actin filaments with MAP 2 is regulated by the phosphorylation-dephosphorylation of MAP 2.  相似文献   

8.
We have already reported that A3 adenosine receptor stimulation reduces [3H]-ryanodine binding and sarcoplasmic reticulum Ca2+ release in rat heart. In the present work we have investigated the transduction pathway responsible for this effect. Isolated rat hearts were perfused for 20 min in the presence of the following substances: 100 nM N6-(iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA), an A3 adenosine agonist; 10 μM U-73122, a phospholipase C inhibitor; 2 μM chelerythrine, a protein kinase C inhibitor. At the end of perfusion, the hearts were homogenized and [3H]-ryanodine binding was assayed. IB-MECA produced a significant decrease in ryanodine binding, which was abolished in the presence of chelerythrine but not in the presence of U-73122. RT-PCR experiments showed that ryanodine receptor gene expression was not affected by IB-MECA. In Western blot experiments, ryanodine receptor phosphorylation on serine 2809 was not modified after perfusion with IB-MECA. We conclude that modulation of SR Ca2+ release channel by IB-MECA is dependent on protein kinase C activation. However, in this model protein kinase C activation is not due to phospholipase C activation. In addition, changes in ryanodine receptor gene expression or direct phosphorylation of the ryanodine receptor on serine 2809 residue do not appear to occur.  相似文献   

9.
SCG10 is a neuron-specific, developmentally regulated protein which is highly enriched in growth cones. Sequence homology indicates that it is related to the phosphoprotein stathmin or Op18, anin vitroandin vivosubstrate for several serine/threonine kinases which are involved in a variety of signaling pathways. As a first step to examine the biochemical properties of SCG10, the protein was expressed inEscherichia coliand purified to apparent homogeneity. The purified protein was used inin vitrophosphorylation assays. SCG10 was phosphorylated by MAP kinase, cAMP-dependent protein kinase, cGMP-dependent protein kinase, p34cdc2kinase, DNA-dependent protein kinase, Ca2+/calmodulin kinase II, and casein kinase II. The protein was not a substrate for casein kinase I and protein kinase C. SCG10 was phosphorylated by src tyrosine kinase, which demonstrates that the protein can be phosphorylatedin vitroon a tyrosine residue. Our data suggest that SCG10 is a phosphoprotein which might be involved in signal transduction in neurons.  相似文献   

10.
Abstract: Annexin 2 phosphorylated in vitro by protein kinase C has been shown to restore partially catecholamine secretion in streptolysin O-permeabilized chromaffin cells depleted of their protein kinase C activity. This result suggested a phosphorylation of annexin 2 in stimulated cells. Nicotine stimulation induced an increase of 32P incorporation in annexin 2 heavy chain concomitant with catecholamine release. This incorporation results from phosphorylation by protein kinase C because (a) serine was the only phosphorylated residue, (b) 32P incorporation was inhibited by the protein kinase inhibitors H7, GF 109203X, and staurosporine, and (c) activators of this enzyme, 12- O -tetradecanoylphorbol 13-acetate and 1,2-dioctanoylglycerate, increased the incorporation of radioactivity. The phosphorylated heavy chain had an electrophoretic mobility lower than that of the unmodified one, thus allowing determination of the fraction of phosphorylated protein. In the resting state, a significant fraction of annexin 2 heavy chain was phosphorylated, and nicotine stimulation resulted in an activation of both phosphorylation and dephosphorylation. Phosphorylation was largely increased in the presence of okadaic acid, indicating the involvement of type 1 and 2A phosphatases.  相似文献   

11.
The recombinant human interleukin-2 (IL-2) receptor was expressed in mouse mammary epithelial cells following the transfection of these cells with an expression vector containing the human IL-2 receptor cDNA. The recombinant IL-2 receptor in these cells was rapidly phosphorylated in response to phorbol myristate acetate (PMA), but its phosphorylation could not be detected in the absence of PMA or upon addition of human IL-2. The C-terminal, cytoplasmic peptide domain of the IL-2 receptor, Gln-Arg-Arg-Gln-Arg-Lys-Ser-Arg-Arg-Thr-Ile, was synthesized and used as a substrate for protein kinase C. The Km for phosphorylation of the peptide by protein kinase C was 23 microM. The stoichiometry of phosphorylation was 1 mol of phosphate/mol of peptide and serine was the predominant amino acid phosphorylated. Because this peptide was a good substrate for protein kinase C in vitro, it was possible that the same serine (serine 247) was also phosphorylated in the receptor in the cell. The IL-2 receptor gene in the expression vector was therefore altered by site-directed mutagenesis to code for an IL-2 receptor containing an alanine in the place of serine 247. The IL-2 receptor expressed by these cells was not phosphorylated in the presence of PMA. These data suggest that protein kinase C, in response to PMA, phosphorylates the C-terminal serine residue (serine 247) in the human IL-2 receptor.  相似文献   

12.
13.
Cytoskeletal preparation obtained from synaptosome fractions of rat cerebrum contained the activity of kinase C, which phosphorylated 17K Mr protein endogenous to the preparation. The kinase C activity associated with the synaptosome cytoskeletons is greater in the cerebellum and hippocampus than in the cerebrum. The enhancement rates of phosphorylation of the 17K Mr protein were 293%, 544%, and 526% in the Triton X-100-insoluble fractions of synaptosomes prepared from cerebral cortex, hippocampus, and cerebellum, respectively. The 17K Mr protein was distinct from myelin basic protein (MBP) for the following reasons: 1) The electrophoretic mobility of the protein was slightly smaller than that of major MBP of rat in the polyacrylamide gel of 10–20% linear gradient, and the protein was not contained in the purified rat myelin. 2) The isoelectric point of the protein was in neutral range, whereas that of MBP was in alkaline one. 3) The 17K Mr protein did not cross-react with anti-MBP antibody. The protein was shown to be a major substrate contained in the cytoskeletal preparation of synaptosome obtained from cerebrum except for contaminating MBP. Only serine residue of the 17K Mr protein was phosphorylated by the kinase C endogenous to the preparation. The results suggest strongly that the synaptic role of protein kinase C through phosphorylation of the 17K Mr protein.Abbreviations used EGTA ethyleneglycol-bis(-aminoethyl ether) - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - MBP myelin basic protein - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SPM synaptic plasma membrane  相似文献   

14.
In our previous studies phosphorylation of several membrane-bound proteins in brain and liver mitochondria were found to be regulated by Ca2+ as a second messenger. One of the proteins, the 46 kDa phosphoprotein was found to be highly phosphorylated when Ca2+-induced permeability transition pore (mPTP) was opened in rat brain mitochondria (RBM). In the present study the 46 kDa phosphoprotein was identified as 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) after purification by 2D diagonal electrophoresis following mass spectrometric analysis and Western blot probed with anti-CNP antibody. CNPase was discovered in immunoprecipitates of mitochondria, phosphorylated under both conditions (control and with opened mPTP). Status phosphorylation of CNPase was found to be higher in the inmmunoprecipiates of calcium-overloaded RBM. The phospohoserine and phosphotyrosine residues were detected in phosphorylated 46 kDa band (CNPase) as well as in CNPase immunoprecipitates indicating possible participation of tyrosine and serine protein kinases in phosphorylation of CNPase in mitochondria. The levels of phospo-Ser and phospho-Tyr were increased in RBM with mPTP opened. It was found that CNPase substrate, 2′,3′-cAMP (5 μM) and, a non-competitive CNPase inhibitor, atractyloside (5 μM), were able to increase the level of CNPase phosphorylation in calcium-overloaded mitochondria, while CsA (mPTP blocker) was able to strong suppress the phosphorylation of the enzyme. Collectively, our results provide evidence that Ca2+-stimulated and mPTP-associated CNPase phosphorylation might be an important stage of mPTP regulation in mitochondria, revealing a new function of CNPase outside of myelin structure.  相似文献   

15.
Dechlorination of Chloroform by Methanosarcina Strains   总被引:9,自引:6,他引:3       下载免费PDF全文
Dehalogenation of carbon tetrachloride, chloroform, and bromoform in pure cultures of Methanosarcina sp. strain DCM and Methanosarcina mazei S6 was demonstrated. The initial dechlorination product of chloroform was methylene chloride (dichloromethane), which accumulated transiently to about 70% of the added chloroform; trace amounts of chloromethane were also detected. The amount of chloroform dechlorinated per mole of methane produced was approximately 10 times greater than the ratio observed previously for tetrachloroethene dechlorination by these strains. The production of 14CO2 from [14C]chloroform and the absence of 14CH4 imply that processes in addition to reductive dechlorination operate.  相似文献   

16.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

17.
《BBA》1987,890(1):77-81
Thylakoids from dark-adapted leaves phosphorylated histone III faster in the light than in the dark, such process being the resultant of a light activation of a threonine protein phosphorylation and a light inactivation of a serine protein phosphorylation. Phosphorylation of histone III by thylakoids from dark-adapted leaves showed an optimal pH of 7.1 in the light and of 8.5 in the dark. Storage of the thylakoids at −20°C for 3 weeks completely abolished threonine phosphorylation, but had minor effect on serine protein phosphorylation which was also inhibited by illumination during the protein kinase assay. Preillumination of the spinach leaves inactivated the serine protein phosphorylation catalyzed by thylakoids. These results are consistent with the presence of two distinguishable thylakoid-bound protein kinase activities in terms of their response to light, optimal pH and specificity for amino acid residue in the protein substrate.  相似文献   

18.
IgE-mediated stimulation of rat basophilic leukemia (RBL-2H3) cells results in the secretion of histamine. Myosin immunoprecipitated from these cells shows an increase in the amount of radioactive phosphate incorporated into its heavy (200 kDa) and light (20 kDa) chains. In unstimulated cells two-dimensional mapping of tryptic peptides of the myosin light chain reveals one phosphopeptide containing the serine residue phosphorylated by myosin light chain kinase. Following stimulation a second phosphopeptide appears containing a serine residue phosphorylated by protein kinase C. Tryptic phosphopeptide maps derived from myosin heavy chains show that unstimulated cells contain three major phosphopeptides. Following stimulation a new tryptic phosphopeptide appears containing a serine site phosphorylated by protein kinase C. The stoichiometry of phosphorylation of the myosin light and heavy chains was determined before and after antigenic stimulation. Before stimulation, myosin light chains contained 0.4 mol of phosphate/mol of light chain all confined to a serine not phosphorylated by protein kinase C. Cells that secreted 44% of their total histamine in 10 min exhibited an increase in phosphate content at sites phosphorylated by protein kinase C from 0 mol of phosphate/mol of myosin subunit to 0.7 mol of phosphate/mol of light chain and to 1 mol of phosphate/mol of heavy chain. When RBL-2H3 cells were made permeable with streptolysin O they still showed a qualitatively similar pattern of secretion and phosphorylation. Our results show that the time course of histamine secretion from stimulated RBL-2H3 cells parallels that of myosin heavy and light chain phosphorylation by protein kinase C.  相似文献   

19.
When highly purified myelin from rat sciatic nerve was incubated with [gamma-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [gamma-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3',5'-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing. From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

20.
1. Recent discoveries have implicated regulation of an apical membrane chloride channel as site of a defect in cystic fibrosis (CF). The channel fails to respond to stimuli that elevate intracellular cAMP. 2. This paper describes properties of reversible cycles of protein phosphorylation and considers substrate specificity, reactions with model peptides, and space-filling structural models. 3. Mutation of a channel regulatory protein is proposed to involve either: (a) change of phosphorylated serine residue to an unreactive residue, (b) change in a nearby residue that does not affect phosphorylation by cAMP-dependent kinase, but results in dephosphorylation by a different phosphatase, or (c) change in a nearby residue that produces a structure unreactive with cAMP-dependent protein kinase. 4. Perhaps in CF sidechains with branched structures at the beta carbons occur on either side of the phosphorylated serine, like in glycogen phosphorylase, and prohibit reaction of a regulatory protein with cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号