首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu CK  Shih CH  Chu IK  Lo C 《Phytochemistry》2008,69(3):700-706
Sorghum SbSTS1, a pathogen inducible gene, was previously demonstrated to encode an enzyme with stilbene synthase activity. In this study, we attempt to identify the stilbene derivatives that accumulate in infected sorghum seedlings after inoculation with the anthracnose pathogen Colletotrichum sublineolum. Scanning for precursor ions that produced the common stilbene aglycones as diagnostic ions was performed in a triple quadrupole mass spectrometer. It was found that infected sorghum seedlings accumulated trans-piceid as the major stilbene metabolite together with an unknown resveratrol derivative. Time-course accumulation of trans-piceid was examined in two sorghum cultivars, DK18 and DK77, which are resistant and susceptible to C. sublineolum, respectively. In both cultivars, trans-piceid was not detected until 48h after inoculation, consistent with the late induction of SbSTS1 reported previously in infected sorghum plants. The levels of trans-piceid detected in DK77 seedlings were approximately three times the levels detected in DK18 seedlings at 120h after inoculation. In vitro assays demonstrated that trans-piceid did not exhibit significant toxicity on conidial germination and mycelial growth of C. sublineolum. Hence trans-piceid alone may not represent an important defense component against the anthracnose pathogen in sorghum seedlings.  相似文献   

2.
A chalcone synthase (CHS)-like gene, SbCHS8, with high expressed sequence tag abundance in a pathogen-induced cDNA library, was identified previously in sorghum (Sorghum bicolor). Genomic Southern analysis revealed that SbCHS8 represents a single-copy gene. SbCHS8 expression was induced in sorghum mesocotyls following inoculation with Cochliobolus heterotrophus and Colletotrichum sublineolum, corresponding to nonhost and host defense responses, respectively. However, the induction was delayed by approximately 24 h when compared to the expression of at least one of the other SbCHS genes. In addition, SbCHS8 expression was not induced by light and did not occur in a tissue-specific manner. SbCHS8, together with SbCHS2, was overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) tt4 (transparent testa) mutants defective in CHS activities. SbCHS2 rescued the ability of these mutants to accumulate flavonoids in seed coats and seedlings. In contrast, SbCHS8 failed to complement the mutation, suggesting that the encoded enzyme does not function as a CHS. To elucidate their biochemical functions, recombinant proteins were assayed with different phenylpropanoid-Coenzyme A esters. Flavanones and stilbenes were detected in the reaction products of SbCHS2 and SbCHS8, respectively. Taken together, our data demonstrated that SbCHS2 encodes a typical CHS that synthesizes naringenin chalcone, which is necessary for the formation of different flavonoid metabolites. On the other hand, SbCHS8, now retermed SbSTS1, encodes an enzyme with stilbene synthase activity, suggesting that sorghum accumulates stilbene-derived defense metabolites in addition to the well-characterized 3-deoxyanthocyanidin phytoalexins.  相似文献   

3.
The pathogen- and ethylene-inducible pepper-basic pathogenesis-related (PR)-1 gene, CABPR1 , was strongly expressed in pepper leaves by osmotic and oxidative stresses. The pepper CABPR1 was introduced into the Arabidopsis plants under the control of the cauliflower mosaic virus 35S promoter. Polymerase chain reaction-amplification with the Arabidopsis genomic DNA and Northern blot analyses confirmed that the pepper CABPR1 gene was integrated into the Arabidopsis genome, where it was overexpressed in the transgenic Arabidopsis plants under normal growth conditions. The constitutive overexpression of CABPR1 induced the expression of the Arabidopsis PR-genes including PR-4 , PR-5 and PDF1.2 . Enhanced resistance to phytopathogenic bacteria, Pseudomonas syringae pv. tomato DC3000, was also observed in the transgenic Arabidopsis plants. CABPR1 overexpression in the transgenic Arabidopsis caused enhanced seed germination under NaCl (ionic) and mannitol (non-ionic) osmotic stresses. Enhanced tolerances to high salinity and dehydration stresses during seed germination of the transgenic plants were not found at the early seedling stage. The transgenic Arabidopsis plants exhibited a higher tolerance to oxidative stress by methyl viologen at the seed germination, seedling and adult plant stages. These results suggest that the CABPR1 gene may function in the enhanced disease resistance and oxidative stress tolerance of transgenic Arabidopsis plants.  相似文献   

4.
PR1是拟南芥(Arabidopsisis thaliana L.)系统获得抗性的一个标志基因.利用PCR技术,从拟南芥中扩增并克隆了PR1基因的启动子片段.将该启动子片段与GUS报告基因拼接,构建成含有PR1-GUS融合基因的重组表达质粒.经根癌农杆菌介导转化,得到了转基因的拟南芥植株.用已知的系统获得抗性激活剂处理转基因植物,检测到GUS活性.因此,这一转基因体系可以作为一种简便、灵敏的实验体系以筛选激活植物系统获得抗性的化合物.  相似文献   

5.
 Transformation of barley and wheat via particle bombardment with a gene derived from Vitis vinifera L. (Vst1 gene) resulted in the expression of the foreign phytoalexin, resveratrol, in the transformed plants. Transgenic barley plants were regenerated from microspores and transgenic wheat plants from immature embryos were both selected on Basta. Stable integration of the gene in the genomes of transgenic barley and wheat plants, as well as their progeny, was analysed by Southern-blot analysis. The induction of the stilbene synthase promoter and the transient expression of stilbene synthase-specific mRNA after induction by wounding and infection were proofed in T1 and T2 progeny plants. An enhanced expression of the Vst1 gene under control of the stilbene synthase promoter was observed with enhancer sequences from the cauliflower mosaic virus 35s (CaMV 35s) promoter. The enzyme activity of the stilbene synthase was analysed in T1 progeny plants. The first pathological results indicated an increased resistance of transgenic barley plants to Botrytis cinerea used as a model experimental system. Received: 5 November 1997 / Accepted: 11 November 1997  相似文献   

6.
A gene from groundnut (Arachis hypogaea) coding for stilbene synthase was transferred together with a chimaeric kanamycin resistance gene. It was found to be rapidly expressed after induction with UV light and elicitor in tobacco cells (Nicotiana tabacum). Comparative studies of stilbene synthase mRNA synthesis in groudnut and transgenic tobacco suspension cultures revealed the same kinetics of gene expression. Stilbene synthase specific mRNA was detectable 30 minutes after elicitor induction and 10 minutes after UV irradiation. The maximum of mRNA accumulation was between 2 and 8 hours post induction. 24 hours after induction stilbene synthase mRNA accumulation ceased. Furthermore, in transgenic tobacco plants, the gene was found to be inducible in sterile roots, stems and leaves. Stilbene synthase was demonstrated in crude protein extracts from transgenic tobacco cell cultures using specific antibodies. Resveratrol, the product of stilbene synthase, was identified by HPLC and antisera raised against resveratrol.  相似文献   

7.
PPF1是一个与植物营养生长相关的基因。它编码的产物可能是一个膜蛋白并与拟南芥叶绿体中的类囊体蛋白ALB3有很高的同源性。免疫电镜分析表明PPF1蛋白同样主要定位于类囊体膜 ,而且在短日照G2豌豆开花两周后仍发育良好的叶绿体中有很高的表达 ,在长日照豌豆同时期非正常叶绿体中丰度非常低。对转基因拟南芥和野生型植株的叶片衰老进程比较发现 ,PPF1在拟南芥中的过量表达可以延缓叶片的衰老 ,而用PPF1反义mRNA抑制拟南芥中的同源基因ALB3则明显加快叶片衰老速度。对转基因拟南芥的超微结构分析显示 ,PPF1在拟南芥中过量表达时 ,转基因植株的叶绿体比野生型植株的叶绿体大并含有更多的基粒和基质类囊体膜 ;相反 ,反义PPF1表达抑制其在拟南芥中的同源物时 ,转基因植株的叶绿体比野生型植株的叶绿体小并含有较少的基粒和发育较差的类囊体膜系统。这些数据表明叶绿体的发育状况与PPF1或拟南芥同源物ALB3的表达水平呈正相关。我们的结果提示PPF1基因可能通过控制叶绿体的发育状况来调节植物的发育。  相似文献   

8.
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控.构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(Arabidopsis thaliana L.)植物和水稻(Oryza sativa L.)愈伤组织中以过量表达OsZFP1基因.转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高.这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达.在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节.  相似文献   

9.
Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.)   总被引:17,自引:0,他引:17  
A gene derived from grapevine (Vitis vinifera) coding for stilbene synthase has been transferred into protoplasts of the commercially important japonica rice cultivar Nipponbare using PEG-mediated direct gene transfer. Transgenic plants were regenerated from calli selected on kanamycin. Southern blot analysis of genomic DNA isolated from regenerants and progeny plants demonstrated that the stilbene synthase gene is stably integrated in the genome of transgenic rice plants and inherited in the offspring. The transient formation of stilbene-synthase-specific mRNA shortly after inoculation with the fungus of the rice blast Pyricularia oryzae has demonstrated that the grapevine stilbene synthase promoter is also active in monocotyledonous plants. Preliminary results indicate an enhanced resistance of transgenic rice to P. oryzae. Received: 1 July 1996 / Revision received: 5 November 1996 / Accepted: 30 November 1996  相似文献   

10.
We have characterized the mechanism of action of four transgenes (AtBCB [Arabidopsis blue copper-binding protein], parB [tobacco (Nicotiana tabacum) glutathione S-transferase], NtPox [tobacco peroxidase], and NtGDI1 [tobacco GDP dissociation inhibitor]) that independently Al resistance on transgenic Arabidopsis. All four transgenic lines showed lower deposition of callose after Al treatment than the Landsberg erecta ecotype of Arabidopsis, confirming that the four genes function to ameliorate Al toxicity. Influx and efflux experiments of Al ions suggested that the AtBCB gene may suppress Al absorption, whereas expression of the NtGDI1 gene promotes a release of Al in the root tip region of Arabidopsis. The total enzyme activities of glutathione S-transferases or peroxidases in transgenic lines carrying either the parB or NtPox genes were significantly higher than in the Landsberg erecta ecotype of Arabidopsis, and these enzyme activities were maintained at higher levels during Al stress. Furthermore, lipid peroxidation caused by Al stress was repressed in these two transgenic lines, suggesting that overexpression of these two genes diminishes oxidative damage caused by Al stress. Al-treated roots of transgenic plants were also stained by 4',6-diamino-2-phenylindole to monitor cell death caused by Al toxicity. The result suggested that cell death is repressed in the NtPox line. Analysis of F(1) hybrids between the four transgenic lines suggests that more resistant transgenic plants can be constructed by combinations of these four genes.  相似文献   

11.
根据拟南芥AtCYP1基因序列设计特异引物,以拟南芥总DNA为模板,扩增AtCYP1基因中344 bp转录本,插入表达载体PTCK303,构建目的基因RNA干扰载体Ubi::AtCYP1i。利用改良的农杆菌浸染技术获得拟南芥RNAi转基因株系,RT-PCR分析结果表明转基因株系中AtCYP1基因的表达量低于野生型,表型观察结果表明RNAi转基因纯合株系抽苔时间比野生型晚3.32 d,抽苔叶片数较野生型多2.49片,其开花时间、结出第一个种荚的时间、株高等方面也与野生型存在明显差异。此结果说明AtCYP1可能参与了拟南芥的早花发育过程,为进一步研究其在植物生长发育中的功能奠定了基础。  相似文献   

12.
Two cDNA clones, specifically expressed in Nicotiana sylvestris anthers during uninucleate microspore development, were isolated using a subtractive hybridization approach. Sequence analysis showed that one of them, NSCHSLK, displayed a high level of similarity to several anther-specific chalcone synthase-like (CHSLK) proteins and an ORF from chromosome 1 of Arabidopsis thaliana. A lower, but significant, similarity to chalcone synthases and closely related enzymes (CHSRE) was also detected. The structure of the nschslk gene was found to be typical of the chalcone (chs) / stilbene (sts) synthase family. Expression of NSCHSLK mRNA was confined to microspores and tapetal cells. UV-irradiation or infection with Phytophthora parasitica var. nicotianae of transgenic Nicotiana benthamiana plants carrying a chimeric nschslk/GUS gene indicated that the nschslk promoter exhibits the same anther-specific, developmentally regulated expression pattern. Comparison of CHSRE and CHSLK polypeptide sequences revealed some important similarities and differences between the two groups. The data presented in this study, suggest that the anther-specific chslk genes represent a separate sub-family of plant polyketide synthases related to chs/sts in terms of gene structure, polypeptide sequence and the possible catalytic mechanism, but differing in substrate/product specificity. The putative role of CHSLK enzymes in anther development and particularly in exine synthesis is discussed.  相似文献   

13.
14.
植物抗毒素转化水稻和转基因植株的生物鉴定   总被引:15,自引:0,他引:15  
用基因枪法转化了水稻(OryzasativaL.)6个材料的未成熟胚、成熟胚及胚性愈伤组织。质粒pSSVst1和pVE5+是由葡萄中分离出的编码芪类合成酶的植物抗毒素基因与35S或它自己的启动子组成。G418(100~150mg/L)或潮霉素(50mg/L)筛选后,经PCR、Southernblot或Dotblot分析证明的转基因植株共54株。对转基因植株及其后代进行了稻瘟病和白叶枯病的抗性鉴定。初步结果表明,芪类合成酶基因可以提高转基因植株及后代的抗性。  相似文献   

15.
PR1是拟南芥 (Arabidopsis thaliana L.) 系统获得抗性的一个标志基因。利用PCR技术,从拟南芥中扩增并克隆了PR1基因的启动子片段。将该启动子片段与GUS报告基因拼接,构建成含有PR1-GUS融合基因的重组表达质粒。经根癌农杆菌介导转化,得到了转基因的拟南芥植株。用已知的系统获得抗性激活剂处理转基因植物,检测到GUS活性。因此,这一转基因体系可以作为一种简便、灵敏的实验体系以筛选激活植物系统获得抗性的化合物。  相似文献   

16.
水稻受盐抑制基因OsZFP1的转基因分析   总被引:7,自引:0,他引:7  
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控。构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(ArabidopsisthalianaL.)植物和水稻(OryzasativaL.)愈伤组织中以过量表达OsZFP1基因。转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高。这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达。在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节。  相似文献   

17.
Y L Xu  L Li  D A Gage    J A Zeevaart 《The Plant cell》1999,11(5):927-936
The gibberellin (GA) 20-oxidase encoded by the GA5 gene of Arabidopsis directs GA biosynthesis to active GAs, whereas that encoded by the P16 gene of pumpkin endosperm leads to biosynthesis of inactive GAs. Negative feedback regulation of GA5 expression was demonstrated in stems of Arabidopsis by bioactive GAs but not by inactive GA. In transgenic Arabidopsis plants overexpressing P16, there was a severe reduction in the amounts of C20-GA intermediates, accumulation of large amounts of inactive GA25 and GA17, a reduction in GA4 content, and a small increase in GA1. However, due to feedback regulation, expression of GA5 and GA4, the gene coding for the subsequent 3beta-hydroxylase, was greatly increased to compensate for the effects of the P16 transgene. Consequently, stem height was only slightly reduced in the transgenic plants.  相似文献   

18.
19.
Immature embryos, mature embryos and embryogenie ealli of 6 rice ( Oryza sativa L. ) materials were transformed with particle bombardment. The plasmids pSSVsfl and pVE5 + were used, both containing the phytoalexin gene from grapevine coding for stilbene synthase, but driven by 35S and its own promoter respectively. Through resistance selection for G418 ( 100 to 150 mg/L) or hygromycin (50 mg/L), 54 independent transgenic plants were isolated and further assessed by PCR, Southern blot and Dot blot analyses. The transgenic plants and their progenies were tested for resistance to blast ( Pyricularia oryzae) and bacterial blight of rice ( Xanthomonas oryzae). Preliminary results indicated that the stilbene synthase gene could enhance the resistance of transgenic plants and their progenies to both pathogens.  相似文献   

20.
Overexpression of SOD2 increases salt tolerance of Arabidopsis   总被引:7,自引:0,他引:7       下载免费PDF全文
Gao X  Ren Z  Zhao Y  Zhang H 《Plant physiology》2003,133(4):1873-1881
The yeast (Schizosaccharomyces pombe) SOD2 (Sodium2) gene was introduced into Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. Southern- and northern-blot analyses confirmed that SOD2 was transferred into the Arabidopsis genome. There were no obvious morphological or developmental differences between the transgenic and wild-type (wt) plants. Several transgenic homozygous lines and wt plants (control) were evaluated for salt tolerance and gene expression. Overexpression of SOD2 in Arabidopsis improved seed germination and seedling salt tolerance. Analysis of Na+ and K+ contents of the symplast and apoplast in the parenchyma cells of the root cortex and mesophyll cells in the spongy tissue of the leaf showed that transgenic lines accumulated less Na+ and more K+ in the symplast than the wt plants did. The photosynthetic rate and the fresh weight of the transgenic lines were distinctly higher than that of wt plants after NaCl treatment. Results from different tests indicated that the expression of the SOD2 gene promoted a higher level of salt tolerance in vivo in transgenic Arabidopsis plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号