首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]Mepyramine binds with high affinity to membranes from brain of human, rat, guinea-pig, rabbit and mouse with drug specificity indicating an association with histamine H1receptors. Considerable species differences occur in the affinity of [3H]mepyramine, with guinea-pig and human having 34 times greater affinity than rat, mouse or rabbit. The greater affinity of [3H]mepyramine in guinea-pig than in rat is attributable both to faster association and slower dissociation rates in guinea-pig. Species differences in affinity for H1 receptor sites occur for some antihistamines but not for others. Some tricyclic antidepressant and neuroleptic drugs are extremely potent inhibitors of [3H]mepyramine binding, exceeding in potency any H1 antihistamines examined. The tricyclic antidepressant doxepin and the neuroleptic clozapine are the most potent of all drugs examined in competing for [3H]mepyramine binding. The regional distribution of specific [3H]mepyramine binding differs considerably in the various species examined.  相似文献   

2.
Affinity constants for five antagonists at histamine H1-receptors in guinea pig brain have been determined from inhibition of the potentiation by histamine of the adenosine-induced accumulation of cyclic AMP in cerebral cortical slices. This action of histamine appeared to be mediated solely through H1-receptors. The affinity constants obtained were similar to those determined on peripheral H1-receptors and from inhibition of high-affinity [3H]mepyramine binding. This provides strong evidence that at least some of the [3H]mepyramine binding sites in guinea pig brain can be identified with functional H1-receptors.  相似文献   

3.
The promethazine-sensitive [3H]mepyramine binding was used to determine the presence of histamine H1 receptors in membranes from bovine retina. Specific mepyramine binding to retinal membranes was reversible, saturable and of high affinity. The apparent dissociation constant (KD = 2.2 +/- 0.4 nM) and the density of binding sites (Bmax = 60.9 +/- 5.1 fmol/mg protein), obtained in equilibrium studies, were similar to those found in bovine brain cortex. Binding was stereospecific and the inhibitory potencies of H1 and H2 antagonists indicated that [3H] mepyramine binding sites in the retina have characteristics of H1 receptors.  相似文献   

4.
Marked species variations occured in the relative activity of mequitazine (10-[3-quinuclidinylmethyl]-phenothiazine) on the binding of [3H]mepyramine to brain cortical membranes. Mequitazine was as potent as promethazine in the mouse but about 6 times less effective than promethazine in the guinea pig and human. On the other hand in the guinea pig mequitazine was as potent as promethazine on [3H]mepyramine binding in a peripheral organ (lung). Although mequitazine did not displace [3H]mepyramine in vivo in the mouse and guinea pig, its brain concentration (measured by [3H]mequitazine) was largely sufficient and corresponds to 90% of inhibition in vitro. Moreover in the mouse the brain regional distribution of [3H]mequitazine was very different from that of [3H]mepyramine, highest level was obtained in the cerebellum and hypothalamus was the poorest region with mequitazine whereas the reverse was true with mepyramine. All these results could suggest that mequitazine possesses a greater affinity for peripheral H1 receptors which could explain the absence of sedative side-effects of this potent H1 antagonist.  相似文献   

5.
Abstract: The binding of [3H]bicuculline methochloride (BMC) to mammalian brain membranes was characterized and compared with that of [3H]γ-aminobutyric acid ([3H]GABA). The radiolabeled GABA receptor antagonist showed significant displaceable binding in Tris-citrate buffer that was improved by high concentrations of chloride, iodide, or thiocyanate, reaching >50% displacement in the presence of 0.1 M SCN?. An apparent single class of binding sites for [3H]BMC (KD= 30 nM) was observed in 0.1 M SCN? for fresh or frozen rat cortex or several regions of frozen and thawed bovine brain. The Bmax was about 2 pmol bound/mg of crude mitochondrial plus microsomal membranes from unfrozen washed and osmotically shocked rat cortex, similar to that for [3H]GABA. Frozen membranes, however, showed decreased levels of [3H]BMC binding with no decrease or an actual increase in [3H]GABA binding sites. [3H]BMC binding was inhibited by GABA receptor specific ligands, but showed a higher affinity for antagonists and lower affinity for agonists than did [3H]GABA binding. Kinetics experiments with [3H]GABA binding revealed that low- and high-affinity sites showed a similar pharmacological specificity for a series of GABA receptor ligands, but that whereas all agonists had a higher affinity for slowly dissociating high-affinity [3H]GABA sites, bicuculline had a higher affinity for rapidly dissociating low-affinity [3H]GABA sites. This reverse potency between agonists and antagonists during assay of radioactive antagonists or agonists supports the existence of agonist- and antagonist-preferring conformational states or subpopulations of GABA receptors. The differential affinities, as well as opposite effects on agonist and antagonist binding by anions, membrane freezing, and other treatments, suggest that [3H]BMC may relatively selectively label low-affinity GABA receptor agonist sites. This study, using a new commercially available preparation of [3H]bicuculline methochloride, confirms the report of bicuculline methiodide binding by Mohler and Okada (1978), and suggests that this radioactive GABA antagonist will be a valuable probe in analyzing various aspects of GABA receptors.  相似文献   

6.
Abstract: Binding of the selective dopamine (DA) uptake inhibitor [3H]GBR 12935 to rat striatal membranes was characterized biochemically and pharmacologically. [3H]-GBR 12935 binding at 0°C was reversible and saturable and Scatchard analysis indicated a single binding site with a KD of 5.5 nM and a Bmax of 760 pmol/mg tissue. [3H]GBR 12935 labeled two binding sites. One binding site was identified as the classic DA uptake site, since methylphenidate, cocaine, diclofensine, and Lu 19–005 potently inhibited [3H]GBR 12935 binding to it. Binding to the second site was inhibited by high concentrations of the above compounds. IC50 values for inhibition of [3H]GBR 12935 binding to the DA uptake site were proportional to IC50 values for inhibition of DA uptake. However, substrates of DA uptake, e.g., DA and 1-methyl-4-phenylpyridine, and DA releasers, e.g., the amphetamines, inhibited [3H]GBR 12935 binding less than DA uptake. Rate experiments excluded the possibility that these “weak” inhibitors affected the binding by alloste-ric coupled binding sites. The second binding site was not a noradrenergic, serotonergic, or GABAergic uptake site. Neither was it a dopaminergic, acetylcholinergic, histaminic, serotonergic, or adrenergic receptor. However, [3H]GBR 12935 was potently displaced from it by disubstituted piper-azine derivatives, i.e., flupentixol and piflutixol. DA uptake and the DA uptake binding site of [3H]GBR 12935 were located primarily in the striatum, but the piperazine acceptor site was distributed uniformly throughout the brain. Also only the DA uptake binding site was destroyed by 6-OH-DA. Thus, [3H]GBR 12935 labels the classic DA uptake site in rat striatum and also a piperazine acceptor site. Substrates for DA uptake and releasers of DA inhibited [3H]GBR 12935 binding with low potency, but did not alter the rate constants for [3H]GBR 12935 binding. Therefore inhibitors of DA uptake label the carrier site and prevent the carrier process.  相似文献   

7.
Abstract: The binding of [3H]dopamine to brain regions of calf, rat, and human was investigated. The calf caudate contained the highest density of [3H]dopamine binding sites, with a Bmax value of 185 fmol/mg protein, whereas rat and human striatum contained one-third this number of sites. The KD values for [3H]dopamine in all tissues were 2–3 nM. Dopaminergic catecholamines (dopamine, apomorphine, 6,7-dihydroxy-2-aminotetralin, and N-propylnorapomorphine) inhibited the binding of [3H]dopamine in all three species, at low concentrations, with IC50 values of 1.5 to 6 nM. Neuroleptics, in contrast, inhibited the binding at high concentrations (with IC50 values of 200 to 40,000 nM). The [3H]dopamine binding sites were saturable, heat-labile, and detectable only in dopamine-rich brain regions; these sites differed from D2 dopamine sites (labeled by [3H]butyrophenone neuroleptics), and from Dl dopamine sites (labeled by [3H]thioxanthene neuroleptics) associated with the dopamine-stimulated adenylate cyclase. We have, therefore, called these high-affinity [3H]dopamine binding sites D3 sites. [3H]Apomorphine and [3H]ADTN also appeared to label D3 sites. These ligands however, were less selective than [3H]dopamine, and labeled sites other than D3 as well. Assay conditions were important in determining the parameters of [3H]dopamine binding. The optimum conditions for selective labeling of the D3 dopaminergic sites, using [3H]dopamine, required the presence of EDTA and ascorbate.  相似文献   

8.
Abstract: The binding of [3H] γ-aminobutyric acid ([3H]GABA) and [3H]muscimol has been studied in purified synaptic plasma membrane (SPM) preparations from rat brain. Scatchard analysis of specific binding (defined as that displaced by 100 μMγ-aminobutyrate) indicated that the binding of both radiolabelled ligands was best described by a two component Langmuir adsorption isotherm. The apparent KD and Bmax values for [3H]GABA at 4°C were KD1, 20 nM; KD2,165 nM; Bmax1, 0.48 pmol;Bmax2, 6.0 pmol. mg?1; for [3H]muscimol at 4°C they were: KD1, 1.75 nM; KD2, 17.5 nM; Bmaxl, 0.84 pmol. mg?1; Bmax2, 4.8 pmol.mg?1; and for [3H]muscimol at 37°C they were: KD1, 7.0 nM; Km, 60 nM; Bmax], 0.5 pmol-mg?1; Bmax2, 7.2 pmol-mg1. Under the experimental conditions used, the similar Bmilx values for [3H]GABA and [3H]muscimol binding to the SPM preparations suggests that the high- and low-affinity components for the two radiolabeled ligands are identical. The effects of the GAB A antagonist bicuculline on the binding of [3H]muscimol at 4CC and 37°C were studied. At 4°C, antagonism of muscimol binding appeared to be competitive at the high-affinity site but noncompetitive at the low-affinity site. At 37°C, antagonism was again competitive at the high-affinity site but was of a mixed competitive/noncompetitive nature at the low-affinity site. Assuming that binding to the high-affinity site is associated with the pharmacological actions of bicuculline, the apparent KD values obtained suggest a pA2 value of 5.3 against [3H]muscimol at 4°C and 37°C. This figure is in good agreement with several estimates of the potency of bicuculline based on pharmacological measurements. Results from displacement studies using [3H]GABA and [3H]muscimol suggest that [3H]GABA might be a more satisfactory ligand than [3H]muscimol in GABA radioreceptor assays.  相似文献   

9.
Abstract: This study investigated the binding of [3H] CGP 39653, a novel high-affinity antagonist of the N-methyl-D- aspartate (NMDA) recognition site of the NMDA receptor complex. [3H] CGP 39653 bound to the NMDA receptor in well washed rat brain membranes with an affinity of about 15 nM. Other NMDA site drugs inhibited [3H] CGP 39653 binding with the following order of potency: DL-(tetrazol-5- yl)glycine > glutamate > CGS 19755 > DL-2-amino-5- phosphonovalerate (DL-AP5) > NMDA. Glycine and 5, 7- dichlorokynurenate partially inhibited binding. The poly-amines spermine and spermidine increased [3H] CGP 39653 binding (EC50 values of 10 and 22 μM, respectively). This effect was mimicked by arcaine, 1, 5-diethylaminopiperidine, diaminodecane, diethylenetriamine, and Mg2+. The increase in [3H] CGP 39653 was a result of an increased affinity of the binding site for the ligand with very little effect on binding site density. Spermine and Mg2+also increased the affinity of the antagonists DL-AP5 and CGS 19755, but had only minor effects on the affinity of glutamate and NMDA. Arcaine did not reverse the enhancement of [3H] CGP 39653 binding by spermine, spermidine, or Mg2+. Channel-blocking dissociative anesthetics, including dizocilpine and ketamine, did not alter basal or Mg2+-stimulated [3H] CGP 39653 binding. Spermine did not alter either the enhancement of [3H]- dizocilpine by glutamate or the inhibition of [3H]dizocilpine by DL-AP5 or CGS 19755. These studies show that poly-amines and divalent cations selectively enhance the affinity of antagonists for the agonist binding site on the NMDA receptor complex. However, this effect is mediated by a site independent of the primary polyamine site defined using [3H] dizocilpine binding.  相似文献   

10.
In an attempt to characterize the brain histamine H2 receptor, experiments were undertaken to study the binding properties of (N-methyl-3H) -cimetidine, an H2 receptor antagonist, in rat brain membranes. Using a centrifugation assay, 3H-cimetidine binding having a Kd of 0.40μM and a Bmax of 3.9 pmoles/mg protein was detected. Of fourteen anions and cations tested, one, Cu++, dramatically increased specific 3H-cimetidine binding, the increase being due mainly to a change in Bmax. Studies of substrate specificity for 3H-cimetidine binding revealed that Cu++, while not significantly affecting the potency of H2 receptor agonists and antagonists, dramatically decreases the potency of H1 receptor substances on the 3H-cimetidine binding site. In addition, both the relative and absolute potencies of various H2 receptor agonistsv and antagonists in displacing the ligand in the presence of Cu++ parallels their potencies in biological systems. These findings suggest that, under these conditions, 3H-cimetidine may be labelling a biologically relevant H2 binding site in brain and that Cu++ may regulate the substrate specificity for this site. The brain regional distribution and kinetic analysis of the binding suggest that it is not localized solely to the synaptic receptor for histamine, but may also be associated with histamine receptors at other neuronal, glial or vascular sites.  相似文献   

11.
Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

12.
I. Binding of [3H]apomorphine to dopaminergic receptors in rat striatum was most reproducible and clearly detectable when incubations were run at 25°C in Tris-HCl buffer, pH 7.5, containing 1 mM-EDTA and 0.01% ascorbic acid, using a washed total-membrane fraction. The receptor binding was stereospecifically inhibited by (+)-butaclamol, and dopamine agonists and antagonists showed high binding affinity for these sites. Unlabelled apomorphine inhibited an additional nonstereospecific binding site, which was unrelated to dopamine receptors. EDTA in the incubation mixture considerably lowered nonstereospecific [3H]apomorphine binding, apparently by preventing the complexation of the catechol moiety with metal ions which were demonstrated in membrane preparations. Stereospecific [3H]apomorphine binding was not detectable in the frontal cortex, whereas in the absence of EDTA much saturable nonstereospecific binding occurred. II. Kinetic patterns of stereospecific [3H]spiperone and [3H] apomorphine binding to rat striatal membranes and the inhibition patterns of a dopamine antagonist and an agonist were evaluated at different temperatures in high-ionic-strength Tris buffer with salts added and low-ionic-strength Tris buffer with EDTA. Apparent KD, values of spiperone decreased with decreasing tissue concentrations. KD, values of both spiperone and apomorphine were little influenced by temperature changes. Scatchard plots of the stereospecific binding changed from linear to curved; the amount of nonstereospecific binding of the 3H ligands varied considerably, but in opposite directions for spiperone and apomorphine in the different buffers. In various assay conditions, interactions between agonists, and between antagonists, appeared fully competitive, but agonist-antagonist interactions were of mixed type. The anomalous binding patterns are interpreted in terms of surface phenomena occurring upon reactions of a ligand with complex physicochemical properties and nonsolubilized sites on membranes suspended in a buffered aqueous solution. It is concluded that anomalous binding patterns are not necessarily an indication of binding to multiple sites or involvement of distinct receptors for high-affinity agonist and antagonist binding.  相似文献   

13.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

14.
Abstract: In the present study, we investigated the existence of a binding site for l -carnitine in the rat brain. In crude synaptic membranes, l -[3H]carnitine bound with relatively high affinity (KD = 281 nM) and in a saturable manner to a finite number (apparent Bmax value = 7.3 pmol/mg of protein) of binding sites. Binding was reversible and dependent on protein concentration, pH, ionic strength, and temperature. Kinetic studies revealed a Koff of 0.018 min?1 and a Kon of 0.187 × 10?3 min?1 nM?1. Binding was highest in spinal cord, followed by medulla oblongata-pons ≥ corpus striatum ≥ cerebellum = cerebral cortex = hippocampus = hypothalamus = olfactory bulb. l -[3H]Carnitine binding was stereoselective for the l -isomers of carnitine, propionylcarnitine, and acetylcarnitine. The most potent inhibitor of l -[3H]carnitine binding was l -carnitine followed by propionyl-l -carnitine. Acetyl-l -carnitine and isobutyryl-l -carnitine showed an affinity ~500-fold lower than that obtained for l -carnitine. The precursor γ-butyrobetaine had negligible activity at 0.1 mM. l -Carnitine binding to rat crude synaptic membrane preparation was not inhibited by neurotransmitters (GABA, glycine, glutamate, aspartate, acetylcholine, dopamine, norepinephrine, epinephrine, 5-hydroxytryptamine, histamine) at a final concentration of 0.1 mM. In addition, the binding of these neuroactive compounds to their receptors was not influenced by the presence of 0.1 mMl -carnitine. Finally, a subcellular fractionation study showed that synaptic vesicles contained the highest density of l -carnitine membrane binding sites whereas l -carnitine palmitoyltransferase activity was undetectable, thus excluding the possibility of the presence of an active site for carnitine palmitoyltransferase. This finding indicated that the localization of the l -[3H]carnitine binding site should be essentially presynaptic.  相似文献   

15.
The concentrations of glucose transporter in the cerebral cortex and brainstem of neonatal (4–7 days old) and adult rats were measured using [3H]cytochalasin B binding. There was significantly lower binding in neonatal cortex (1.9 ± 0.7 pmol/mg protein) compared to adult (8.9 ± 2.5 pmol/mg protein). Scatchard analysis indicates this difference is due to a lower Bmax (neonate, 9.7 pmol/mg protein; adult, 18.6 ± 1.3 pmol/mg protein). Measurement of [3H]cytochalasin B binding in microvessels prepared from cortex of adult (28.1 ± 3.5 pmol/mg protein) and neonate (12.8 ± 1.9 pmol/mg protein) indicates a lower binding in the microvasculature of neonates, whereas no such difference was seen in the binding in microvessels prepared from adult and neonatal brainstem (adult, 11.8 ± 2.3 pmol/mg protein; neonate, 9.4 ± 2.7 pmol/mg protein). In both adult and neonate brain, there is an enrichment of glucose transporters in the microvasculature.  相似文献   

16.
—The specific binding of [3H]kainic acid to synaptic membranes from rat brain was saturable with a dissociation constant of about 60 nm . The apparent maximal number of binding sites was about 1 pmol/mg protein. The most effective displacer of specific [3H]kainic acid binding was quisqualic acid, a powerful excitant which is structurally similar to l -glutamate. However, quisqualic acid was one-third as potent a displacer as kainic acid itself. l -Glutamate was the next potent in displacing [3H]kainic acid binding, but also was less effective (1/25) than kainic acid itself. All other compounds including suspected neurotransmitters were at least an order of magnitude lower in potency compared to l -glutamate. When various tissues and brain regions were tested for specific [3H]kainic acid binding, we found the specified binding was localized to grey matter in the brain. In studies of subcellular fractionation of the brain, we found that crude synaptosomal membrane preparations were most enriched in specific [3H]kainic acid binding. Specific [3H]kainic acid binding in various regions of the rat brain varied 5- to 6-fold.  相似文献   

17.
Abstract: Pretreatment with Triton X-100 more than doubled the binding of radiolabeled 5,7-dichlorokynurenic acid (DCKA), a proposed antagonist at a glycine (Gly) recognition domain on the N-methyl-d -aspartate (NMDA) receptor ionophore complex, in rat brain synaptic membranes. The binding exhibited an inverse temperature dependency, reversibility, and saturability, the binding sites consisting of a single component with a high affinity (27.5 nM) and a relatively low density (2.87 pmol/mg of protein). The binding of both [3H]DCKA and [3H]Gly was similarly displaced by numerous putative agonists and antagonists at the Gly domain in a concentration-dependent manner at a concentration range of 100 nM to 0.1 mM. Among the 24 putative ligands tested, DCKA was the second most potent displacer of the binding of both radioligands with no intrinsic affinity for the binding of [3H]kainic acid and α-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid (AMPA) to the non-NMDA receptors. In contrast, the other proposed potent Gly antagonist, 5,7-dinitroquinoxaline-2,3-dione, was active in displacing the binding of [3H]glutamic ([3H]Glu) and D,L-(E)-2-amino-4-[3H]propyl-5-phosphono-3-pentenoic acids to the NMDA recognition domain with a relatively high affinity for the non-NMDA receptors. In addition, the proposed antagonist at the AMPA-sensitive receptor, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline, not only displaced weakly the binding of both [3H]- Gly and [3H]DCKA, but also inhibited the binding of (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) to an ion channel associated with the NMDA-sensitive receptor in the presence of added Glu alone in a manner sensitive to antagonism by further added Gly. Clear correlations were seen between potencies of the displacers to displace [3H]DCKA binding and [3H]Gly binding, in addition to between the potencies to displace [3H]-DCKA or [3H]Gly binding and to potentiate or inhibit [3H]MK-801 binding. All quinoxalines tested were invariably more potent displacers of [3H]DCKA binding than [3H]Gly binding, whereas kynurenines were similarly effective in displacing the binding of both [3H]Gly and [3H]-DCKA. These results undoubtedly give support to the proposal that [3H]DCKA is one useful radioligand available in terms of its high selectivity and affinity for the Gly domain in the brain. Possible multiplicity of the Gly domain is suggested by the differential pharmacological profiles between the binding of [3H]Gly and [3H]DCKA.  相似文献   

18.
Abstract: Histamine elicits its biological effects via three distinct G protein-coupled receptors, termed H1, H2, and H3. We have used guanosine 5′-(γ-[35S]thio)triphosphate (GTPγ[35S]) autoradiography to localize histamine receptor-dependent G protein activation in rat brain tissue sections. Initial studies revealed that in basal conditions, adenosine was present in tissue sections in sufficient concentrations to generate an adenosine A1 receptor-dependent GTPγ[35S] signal in several brain regions. All further incubations therefore contained 8-cyclopentyl-1,3-dipropylxanthine (10 µM), a selective A1 receptor antagonist. Histamine elicited dose-dependent increments in GTPγ[35S] binding to discrete anatomical structures, most notably the caudate putamen, cerebral cortex, and substantia nigra. The overall anatomical pattern of the histamine-evoked binding response closely reflects the known distribution of H3 binding sites and was faithfully mimicked by Nα-methylhistamine, (R)-α-methylhistamine, and immepip, three H3-selective agonists. In all regions examined, the GTPγ[35S] signal was reversed with thioperamide and clobenpropit, two potent H3-selective antagonists, whereas mepyramine, a specific H1 antagonist, and cimetidine, a prototypic H2 antagonist, proved ineffective. These data indicate that in rat brain tissue sections, GTPγ[35S] autoradiography selectively detects H3 receptor-dependent signaling in response to histamine stimulation. As the existing evidence suggests that GTPγ[35S] autoradiography preferentially reveals responses to Gi/o-coupled receptors, our data indicate that most, if not all, central H3 binding sites represent functional receptors coupling to Gi/o, the inhibitory class of G proteins. Besides allowing more detailed studies on H3 receptor signaling within anatomically restricted regions of the CNS, GTPγ[35S] autoradiography offers a novel approach for functional in vitro screening of H3 ligands.  相似文献   

19.
Abstract: RS-42358–197{(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2,4,5,6-tetrahydro-1H-benzo[de]isoquinolin-1-one hydrochloride} displaced the prototypic 5-hydroxytryptamine3 (5-HT3) receptor ligand [3H]quipazine in rat cerebral cortical membranes with an affinity (pKi) of 9.8 ± 0.1, while having weak affinity (pKi < 6.0) in 23 other receptor binding assays. [3H]RS-42358–197 was then utilized to label 5-HT3 receptors in a variety of tissues. [3H]RS-42358–197 labelled high-affinity and saturable binding sites in membranes from rat cortex, NG108–15 cells, and rabbit ileal myenteric plexus with affinities (KD) of 0.12 ± 0.01, 0.20 ± 0.01, and 0.10 ± 0.01 nM and densities (Bmax) of 16.0 ± 2.0, 660 ± 74, and 88 ± 12 fmol/mg of protein, respectively. The density of sites labelled in each of these tissues with [3H]RS-42358–197 was similar to that labelled with [3H]GR 65630, but was significantly less than that found with [3H]-quipazine. The binding of [3H]RS-42358–197 had a pharmacological profile similar to that of [3H]quipazine, as indicated by the rank order of displacement potencies: RS-42358–197 > (S)-zacopride > tropisetron > (R)-zacopride > ondansetron > MDL72222 > 5-HT. However, differences in 5-HT3 receptors of different tissues and species were detected on the basis of statistically significant differences in the affinities of phenylbiguanide, and 1-(m-chlorophenyl)biguanide when displacing [3H]RS-42358-197 binding. [3H]RS-42358–197 also labelled a population (Bmax= 91 ± 17 fmol/mg of protein) of binding sites in guinea pig myenteric plexus membranes, with lower affinity (KD= 1.6 ± 0.3 nM) than those in the other preparations. Moreover, the rank order of displacement potencies of 15 5-HT3 receptor ligands in guinea pig ileum was found not to be identical to that in other tissues. Binding studies carried out with [3H]RS-42358–197 have detected differences in 5-HT3 receptor binding sites in tissues of different species and further underscore the unique nature of the guinea pig 5-HT3 receptor.  相似文献   

20.
H3-Receptors Control Histamine Release in Human Brain   总被引:4,自引:1,他引:3  
The regulation of histamine release was studied on slices prepared from pieces of human cerebral cortex removed during neurosurgery and labeled with L-[3H]histidine. Depolarization by increased extracellular K+ concentration induced [3H]histamine release, although to a lesser extent than from rat brain slices. Exogenous histamine reduced by up to 60% the K+-evoked release, with an EC50 of 3.5 +/- 0.5 X 10(-8) M. The H3-receptor antagonists impromidine and thioperamide reversed the histamine effect in an apparently competitive manner and enhanced the K+-evoked release, indicating a participation of endogenous histamine in the release control process. The potencies of histamine and the H3-receptor antagonists were similar to those of these agents at presynaptic H3-autoreceptors controlling [3H]histamine release from rat brain slices. It is concluded that H3-receptors control histamine release in the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号