首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual''s age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact.  相似文献   

2.
BackgroundHuman mobility among residential locations can drive dengue virus (DENV) transmission dynamics. Recently, it was shown that individuals with symptomatic DENV infection exhibit significant changes in their mobility patterns, spending more time at home during illness. This change in mobility is predicted to increase the risk of acquiring infection for those living with or visiting the ill individual. It has yet to be considered, however, whether social contacts are also changing their mobility, either by socially distancing themselves from the infectious individual or increasing contact to help care for them. Social, or physical, distancing and caregiving could have diverse yet important impacts on DENV transmission dynamics; therefore, it is necessary to better understand the nature and frequency of these behaviors including their effect on mobility.Methodology and principal findingsThrough community-based febrile illness surveillance and RT-PCR infection confirmation, 67 DENV positive (DENV+) residents were identified in the city of Iquitos, Peru. Using retrospective interviews, data were collected on visitors and home-based care received during the illness. While 15% of participants lost visitors during their illness, 22% gained visitors; overall, 32% of all individuals (particularly females) received visitors while symptomatic. Caregiving was common (90%), particularly caring by housemates (91%) and caring for children (98%). Twenty-eight percent of caregivers changed their behavior enough to have their work (and, likely, mobility patterns) affected. This was significantly more likely when caring for individuals with low “health-related quality of well-being” during illness (Fisher’s Exact, p = 0.01).Conclusions/SignificanceOur study demonstrates that social contacts of individuals with dengue modify their patterns of visitation and caregiving. The observed mobility changes could impact a susceptible individual’s exposure to virus or a presymptomatic/clinically inapparent individual’s contribution to onward transmission. Accounting for changes in social contact mobility is imperative in order to get a more accurate understanding of DENV transmission.  相似文献   

3.
4.
In wildlife populations, group-living is thought to increase the probability of parasite transmission because contact rates increase at high host densities. Physical contact, such as social grooming, is an important component of group structure, but it can also increase the risk of exposure to infection for individuals because it provides a mechanism for transmission of potentially pathogenic organisms. Living in groups can also create variation in susceptibility to infection among individuals because circulating levels of immunosuppressive hormones like glucocorticoids often depend on an individual’s position within the group’s social structure. Yet, little is known about the relative roles of socially mediated exposure versus susceptibility in parasite transmission among free-living animal groups. To address this issue, we investigate the relationship between host dominance hierarchy and nematode parasite transmission among females in a wild group of Japanese macaques (Macaca fuscata yakui). We use social network analysis to describe each individual female’s position within the grooming network in relation to dominance rank and relative levels of infection. Our results suggest that the number of directly-transmitted parasite species infecting each female, and the relative amount of transmission stages that one of these species sheds in faeces, both increase with dominance rank. Female centrality within the network, which shows positive associations with dominance hierarchy, is also positively associated with infection by certain parasite species, suggesting that the measured rank-bias in transmission may reflect variation in exposure rather than susceptibility. This is supported by the lack of a clear relationship between rank and faecal cortisol, as an indicator of stress, in a subset of these females. Thus, socially mediated exposure appears to be important for direct transmission of nematode parasites, lending support to the idea that a classical fitness trade-off inherent to living in groups can exist.  相似文献   

5.
For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent’s disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence.  相似文献   

6.

Background

Migration has long been understood as an underlying factor for HIV transmission, and sexual partner concurrency has been increasingly studied as an important component of HIV transmission dynamics. However, less work has examined the role of short-term mobility in sexual partner concurrency using a network approach. Short-term mobility may be a risk for HIV for the migrant’s partner as well either through the partner’s risk behaviors while the migrant is away, such as the partner having additional partners, or via exposure to the return migrant.

Methods

Using data from the 2010–11 Zimbabwe Demographic and Health Survey, weighted generalized linear regression models were used to investigate the associations between short-term mobility and partnership concurrency at the individual and partnership levels.

Results

At the individual level, we find strong evidence of an association between short-term mobility and concurrency. Men who traveled were more likely to have concurrent partnerships compared to men who did not travel and the relationship was non-linear: each trip was associated with a 2% higher probability of concurrency, with a diminishing risk at 60 trips (p<0.001). At the partnership level, short-term mobility by the male only or both partners was associated with male concurrency. Couples in which the female only traveled exhibited less male concurrency.

Conclusions

Short-term mobility has the ability to impact population-level transmission dynamics by facilitating partnership concurrency and thus onward HIV transmission. Short-term migrants may be an important population to target for HIV testing, treatment, or social and behavioral interventions to prevent the spread of HIV.  相似文献   

7.
The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi’s model better than zero-order, first-order, and Hixson-Crowell’s model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell’s model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.KEY WORDS: cilostazol, controlled release, disintegration-mediated controlled release (DMCR), extreme vertices mixture design (EVMD), solid dispersion  相似文献   

8.
Heterogeneous exposure to mosquitoes determines an individual’s contribution to vector-borne pathogen transmission. Particularly for dengue virus (DENV), there is a major difficulty in quantifying human-vector contacts due to the unknown coupled effect of key heterogeneities. To test the hypothesis that the reduction of human out-of-home mobility due to dengue illness will significantly influence population-level dynamics and the structure of DENV transmission chains, we extended an existing modeling framework to include social structure, disease-driven mobility reductions, and heterogeneous transmissibility from different infectious groups. Compared to a baseline model, naïve to human pre-symptomatic infectiousness and disease-driven mobility changes, a model including both parameters predicted an increase of 37% in the probability of a DENV outbreak occurring; a model including mobility change alone predicted a 15.5% increase compared to the baseline model. At the individual level, models including mobility change led to a reduction of the importance of out-of-home onward transmission (R, the fraction of secondary cases predicted to be generated by an individual) by symptomatic individuals (up to -62%) at the expense of an increase in the relevance of their home (up to +40%). An individual’s positive contribution to R could be predicted by a GAM including a non-linear interaction between an individual’s biting suitability and the number of mosquitoes in their home (>10 mosquitoes and 0.6 individual attractiveness significantly increased R). We conclude that the complex fabric of social relationships and differential behavioral response to dengue illness cause the fraction of symptomatic DENV infections to concentrate transmission in specific locations, whereas asymptomatic carriers (including individuals in their pre-symptomatic period) move the virus throughout the landscape. Our findings point to the difficulty of focusing vector control interventions reactively on the home of symptomatic individuals, as this approach will fail to contain virus propagation by visitors to their house and asymptomatic carriers.  相似文献   

9.
Human populations are arranged in social networks that determine interactions and influence the spread of diseases, behaviours and ideas. We evaluate the spread of long-term emotional states across a social network. We introduce a novel form of the classical susceptible–infected–susceptible disease model which includes the possibility for ‘spontaneous’ (or ‘automatic’) infection, in addition to disease transmission (the SISa model). Using this framework and data from the Framingham Heart Study, we provide formal evidence that positive and negative emotional states behave like infectious diseases spreading across social networks over long periods of time. The probability of becoming content is increased by 0.02 per year for each content contact, and the probability of becoming discontent is increased by 0.04 per year per discontent contact. Our mathematical formalism allows us to derive various quantities from the data, such as the average lifetime of a contentment ‘infection’ (10 years) or discontentment ‘infection’ (5 years). Our results give insight into the transmissive nature of positive and negative emotional states. Determining to what extent particular emotions or behaviours are infectious is a promising direction for further research with important implications for social science, epidemiology and health policy. Our model provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviours, health states, ideas or diseases with reservoirs.  相似文献   

10.
The epidemic dynamics of infectious diseases vary among cities, but it is unclear how this is caused by patterns of infectious contact among individuals. Here, we ask whether systematic differences in human mobility patterns are sufficient to cause inter-city variation in epidemic dynamics for infectious diseases spread by casual contact between hosts. We analyse census data on the mobility patterns of every full-time worker in 48 Canadian cities, finding a power-law relationship between population size and the level of organization in mobility patterns, where in larger cities, a greater fraction of workers travel to work in a few focal locations. Similarly sized cities also vary in the level of organization in their mobility patterns, equivalent on average to the variation expected from a 2.64-fold change in population size. Systematic variation in mobility patterns is sufficient to cause significant differences among cities in infectious disease dynamics—even among cities of the same size—according to an individual-based model of airborne pathogen transmission parametrized with the mobility data. This suggests that differences among cities in host contact patterns are sufficient to drive differences in infectious disease dynamics and provides a framework for testing the effects of host mobility patterns in city-level disease data.  相似文献   

11.
We constructed deletion mutants and seven point mutants by polymerase chain reaction to investigate the specificity of feline foamy virus integrase functional domains. Complementation reactions were performed for three enzymatic activities such as 3’-end processing, strand transfer, and disintegration. The complementation reactions with deletion mutants showed several activities for 3’-end processing and strand transfer. The conserved central domain and the combination of the N-terminal or C-terminal domains increased disintegration activity significantly. In the complementation reactions between deletion and point mutants, the combination between D107V and deletion mutants revealed 3’-end processing activities, but the combination with others did not have any activity, including strand transfer activities. Disintegration activity increased evenly, except the combination with glutamic acid 200. These results suggest that an intact central domain mediates enzymatic activities but fails to show these activities in the absence of the N-terminal or C-terminal domains. [BMB Reports 2013; 46(1):53-58]  相似文献   

12.
The effective reproduction number (ℜt) is a theoretical indicator of the course of an infectious disease that allows policymakers to evaluate whether current or previous control efforts have been successful or whether additional interventions are necessary. This metric, however, cannot be directly observed and must be inferred from available data. One approach to obtaining such estimates is fitting compartmental models to incidence data. We can envision these dynamic models as the ensemble of structures that describe the disease’s natural history and individuals’ behavioural patterns. In the context of the response to the COVID-19 pandemic, the assumption of a constant transmission rate is rendered unrealistic, and it is critical to identify a mathematical formulation that accounts for changes in contact patterns. In this work, we leverage existing approaches to propose three complementary formulations that yield similar estimates for ℜt based on data from Ireland’s first COVID-19 wave. We describe these Data Generating Processes (DGP) in terms of State-Space models. Two (DGP1 and DGP2) correspond to stochastic process models whose transmission rate is modelled as Brownian motion processes (Geometric and Cox-Ingersoll-Ross). These DGPs share a measurement model that accounts for incidence and transmission rates, where mobility data is assumed as a proxy of the transmission rate. We perform inference on these structures using Iterated Filtering and the Particle Filter. The final DGP (DGP3) is built from a pool of deterministic models that describe the transmission rate as information delays. We calibrate this pool of models to incidence reports using Hamiltonian Monte Carlo. By following this complementary approach, we assess the tradeoffs associated with each formulation and reflect on the benefits/risks of incorporating proxy data into the inference process. We anticipate this work will help evaluate the implications of choosing a particular formulation for the dynamics and observation of the time-varying transmission rate.  相似文献   

13.
The fraction of cases reported, known as ‘reporting’, is a key performance indicator in an outbreak response, and an essential factor to consider when modelling epidemics and assessing their impact on populations. Unfortunately, its estimation is inherently difficult, as it relates to the part of an epidemic which is, by definition, not observed. We introduce a simple statistical method for estimating reporting, initially developed for the response to Ebola in Eastern Democratic Republic of the Congo (DRC), 2018–2020. This approach uses transmission chain data typically gathered through case investigation and contact tracing, and uses the proportion of investigated cases with a known, reported infector as a proxy for reporting. Using simulated epidemics, we study how this method performs for different outbreak sizes and reporting levels. Results suggest that our method has low bias, reasonable precision, and despite sub-optimal coverage, usually provides estimates within close range (5–10%) of the true value. Being fast and simple, this method could be useful for estimating reporting in real-time in settings where person-to-person transmission is the main driver of the epidemic, and where case investigation is routinely performed as part of surveillance and contact tracing activities.  相似文献   

14.
Catastrophic declines in African great ape populations due to disease outbreaks have been reported in recent years, yet we rarely hear of similar disease impacts for the more solitary Asian great apes, or for smaller primates. We used an age-structured model of different primate social systems to illustrate that interactions between social structure and demography create ‘dynamic constraints’ on the pathogens that can establish and persist in primate host species with different social systems. We showed that this varies by disease transmission mode. Sexually transmitted infections (STIs) require high rates of transmissibility to persist within a primate population. In particular, for a unimale social system, STIs require extremely high rates of transmissibility for persistence, and remain at extremely low prevalence in small primates, but this is less constrained in longer-lived, larger-bodied primates. In contrast, aerosol transmitted infections (ATIs) spread and persist at high prevalence in medium and large primates with moderate transmissibility;, establishment and persistence in small-bodied primates require higher relative rates of transmissibility. Intragroup contact structure – the social network - creates different constraints for different transmission modes, and our model underscores the importance of intragroup contacts on infection prior to intergroup movement in a structured population. When alpha males dominate sexual encounters, the resulting disease transmission dynamics differ from when social interactions are dominated by mother-infant grooming events, for example. This has important repercussions for pathogen spread across populations. Our framework reveals essential social and demographic characteristics of primates that predispose them to different disease risks that will be important for disease management and conservation planning for protected primate populations.  相似文献   

15.
Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes’ participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.’s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.’s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic.  相似文献   

16.
Teotihuacan was the first urban civilization of Mesoamerica and one of the largest of the ancient world. Following a tradition in archaeology to equate social complexity with centralized hierarchy, it is widely believed that the city’s origin and growth was controlled by a lineage of powerful individuals. However, much data is indicative of a government of co-rulers, and artistic traditions expressed an egalitarian ideology. Yet this alternative keeps being marginalized because the problems of collective action make it difficult to conceive how such a coalition could have functioned in principle. We therefore devised a mathematical model of the city’s hypothetical network of representatives as a formal proof of concept that widespread cooperation was realizable in a fully distributed manner. In the model, decisions become self-organized into globally optimal configurations even though local representatives behave and modify their relations in a rational and selfish manner. This self-optimization crucially depends on occasional communal interruptions of normal activity, and it is impeded when sections of the network are too independent. We relate these insights to theories about community-wide rituals at Teotihuacan and the city’s eventual disintegration.  相似文献   

17.
Wildlife disease transmission, at a local scale, can occur from interactions between infected and susceptible conspecifics or from a contaminated environment. Thus, the degree of spatial overlap and rate of contact among deer is likely to impact both direct and indirect transmission of infectious diseases such chronic wasting disease (CWD) or bovine tuberculosis. We identified a strong relationship between degree of spatial overlap (volume of intersection) and genetic relatedness for female white-tailed deer in Wisconsin’s area of highest CWD prevalence. We used volume of intersection as a surrogate for contact rates between deer and concluded that related deer are more likely to have contact, which may drive disease transmission dynamics. In addition, we found that age of deer influences overlap, with fawns exhibiting the highest degree of overlap with other deer. Our results further support the finding that female social groups have higher contact among related deer which can result in transmission of infectious diseases. We suggest that control of large social groups comprised of closely related deer may be an effective strategy in slowing the transmission of infectious pathogens, and CWD in particular.  相似文献   

18.
Alzheimer’s disease is the most common cause of dementia worldwide, affecting the elderly population. It is characterized by the hallmark pathology of amyloid-β deposition, neurofibrillary tangle formation, and extensive neuronal degeneration in the brain. Wealth of data related to Alzheimer’s disease has been generated to date, nevertheless, the molecular mechanism underlying the etiology and pathophysiology of the disease is still unknown. Here we described a method for the combined analysis of multiple types of genome-wide data aimed at revealing convergent evidence interest that would not be captured by a standard molecular approach. Lists of Alzheimer-related genes (seed genes) were obtained from different sets of data on gene expression, SNPs, and molecular targets of drugs. Network analysis was applied for identifying the regions of the human protein-protein interaction network showing a significant enrichment in seed genes, and ultimately, in genes associated to Alzheimer’s disease, due to the cumulative effect of different combinations of the starting data sets. The functional properties of these enriched modules were characterized, effectively considering the role of both Alzheimer-related seed genes and genes that closely interact with them. This approach allowed us to present evidence in favor of one of the competing theories about AD underlying processes, specifically evidence supporting a predominant role of metabolism-associated biological process terms, including autophagy, insulin and fatty acid metabolic processes in Alzheimer, with a focus on AMP-activated protein kinase. This central regulator of cellular energy homeostasis regulates a series of brain functions altered in Alzheimer’s disease and could link genetic perturbation with neuronal transmission and energy regulation, representing a potential candidate to be targeted by therapy.  相似文献   

19.
Citrus greening (huanglongbing) is the most destructive citrus disease worldwide. The disease is associated with three species of ‘Candidatus Liberibacter’ among which ‘Ca. Liberibacter asiaticus’ has the widest distribution. ‘Ca. L. asiaticus’ is commonly transmitted by a phloem-feeding insect vector, the Asian citrus psyllid Diaphorina citri. A previous study showed that isolates of ‘Ca. L. asiaticus’ were clearly differentiated by variable number of tandem repeat (VNTR) profiles at four loci in the genome. In this study, the VNTR analysis was further validated by assessing the stability of these repeats after multiplication of the pathogen upon host-to-host transmission using a ‘Ca. L. asiaticus’ strain from Japan. The results showed that some tandem repeats showed detectable changes after insect transmission. To our knowledge, this is the first report to demonstrate that the repeat numbers VNTR 002 and 077 of ‘Ca. L. asiaticus’ change through psyllid transmission. VNTRs in the recipient plant were apparently unrelated to the growing phase of the vector. In contrast, changes in the number of tandem repeats increased with longer acquisition and inoculation access periods, whereas changes were not observed through psyllid transmission after relatively short acquisition and inoculation access periods, up to 20 and 19 days, respectively.  相似文献   

20.
The human immunodeficiency virus type-1 (HIV-1) integrase (IN) mediates insertion of viral DNA into human DNA, which is an essential step in the viral life cycle. In order to study minimal core domain in HIV-1 IN protein, we constructed nine deletion mutants by using PCR amplification. The constructs were expressed in Escherichia coli, and the proteins were subsequently purified and analyzed in terms of biological activity such as enzymatic and DNA-binding activities. The mutant INs with an N-terminal or C-terminal deletion showed strong disintegration activity though they failed to show endonucleolytic and strand transfer activities, indicating that the disintegration reaction does not require the fine structure of the HIV-1 IN protein. In the DNA-binding analysis using gel mobility shift assay and UV cross-linking method, it was found that both the central and C-terminal domains are essential for proper DNA-IN protein interaction although the central or C-terminal domain alone was able to be in close contact with DNA substrate. Therefore, our results suggest that the C-terminal domain act as a DNA-holding motive, which leads to proper interaction for enzymatic reaction between the IN protein and DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号