首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Searching for improved indolesulfonamides with higher polarities, 45 new analogues with modifications on the sulfonamide nitrogen, the methoxyaniline, and/or the indole 3-position were synthesised. They show submicromolar to nanomolar antiproliferative IC50 values against four human tumour cell lines and they are not P-glycoprotein substrates as their potencies against HeLa cells did not improve upon cotreatment with multidrug resistance (MDR) inhibitors. The compounds inhibit tubulin polymerisation in vitro and in cells, thus causing a mitotic arrest followed by apoptosis as shown by cell cycle distribution studies. Molecular modelling studies indicate binding at the colchicine site. Methylated sulfonamides were more potent than those with large and polar substitutions. Amide, formyl, or nitrile groups at the indole 3-position provided drug-like properties for reduced toxicity, with Polar Surface Areas (PSA) above a desirable 75 Å2. Nitriles 15 and 16 are potent polar analogues and represent an interesting class of new antimitotics.  相似文献   

2.
Inflammation and disease are closely related. Inflammation can induce various diseases, and diseases can promote inflammatory response, and two possibly induces each other in a bidirectional loop. Inflammation is usually treated using synthetic anti-inflammatory drugs which are associated with several adverse effects hence are not safe for long-term use. Therefore, there is need for anti-inflammatory drugs which are not only effective but also safe. Several researchers have devoted to the research and development of effective anti-inflammatory drugs with little or no side effects. In this review, we studied some small molecules with reported anti-inflammatory activities and hence potential sources of anti-inflammatory agents. The information was retrieved from relevant studies published between January 2019 and May, 2021 for review. This review study was aimed to provide relevant information towards the design and development of effective and safe anti-inflammation agents.  相似文献   

3.
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.  相似文献   

4.
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure–activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.  相似文献   

5.
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.  相似文献   

6.
Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.  相似文献   

7.
Influenza viruses represent a major threat to human health and are responsible for seasonal epidemics, along with pandemics. Currently, few therapeutic options are available, with most drugs being at risk of the insurgence of resistant strains. Hence, novel approaches targeting less explored pathways are urgently needed. In this work, we assayed a library of nitrobenzoxadiazole derivatives against the influenza virus A/Puerto Rico/8/34 H1N1 (PR8) strain. We identified three promising 4-thioether substituted nitrobenzoxadiazoles (12, 17, and 25) that were able to inhibit viral replication at low micromolar concentrations in two different infected cell lines using a haemagglutination assay. We further assessed these molecules using an In-Cell Western assay, which confirmed their potency in the low micromolar range. Among the three molecules, 12 and 25 displayed the most favourable profile of activity and selectivity and were selected as hit compounds for future optimisation studies.  相似文献   

8.
Plant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4‐year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine‐species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.  相似文献   

9.
Hyaluronan (HA) is the substrate of hyaluronidase (HAase). In addition, HA is able to form electrostatic complexes with many proteins, including HAase. Experiments have shown the strong inhibition of the HA hydrolysis catalyzed by HAase when performed at low HAase over HA concentration ratio and under low ionic strength conditions. Non-catalytic P proteins are able to compete with HAase to form electrostatic complexes with HA and thus to modulate HAase activity. We have modeled the HA–HAase–P system by considering the competition between the two complex equilibria HA–P and HA–HAase, the Michaelis–Menten type behavior of HAase, and the non-activity of the electrostatically complexed HAase. Simulations performed by introducing experimental data produce a theoretical behavior similar to the experimental one, including all the atypical phenomena observed: substrate-dependence, enzyme-dependence and protein-dependence of HAase. This shows that our assumptions are sufficient to explain the behavior of the system and allow us to estimate unknown parameters and suggest new developments.  相似文献   

10.
11.
A library of variously decorated N-phenyl secondary sulphonamides featuring the bicyclic tetrahydroquinazole scaffold was synthesised and biologically evaluated for their inhibitory activity against human carbonic anhydrase (hCA) I, II, IV, and IX. Of note, several compounds were identified showing submicromolar potency and excellent selectivity for the tumour-related hCA IX isoform. Structure–activity relationship data attained for various substitutions were rationalised by molecular modelling studies in terms of both inhibitory activity and selectivity.  相似文献   

12.
To discover new lead compounds with anti-tumour activities, in the present study, natural diosgenin was hybridised with the reported benzoic acid mustard pharmacophore. The in vitro cytotoxicity of the resulting newly synthesised hybrids (8–10, 14a–14f, and 15a–15f) was then evaluated in three tumour cells (HepG2, MCF-7, and HeLa) as well as normal GES-1 cells. Among them, 14f possessed the most potential anti-proliferative activity against HepG2 cells, with an IC50 value of 2.26 µM, which was 14.4-fold higher than that of diosgenin (IC50 = 32.63 µM). Furthermore, it showed weak cytotoxicity against GES-1 cells (IC50 > 100 µM), thus exhibiting good antiproliferative selectivity between normal and tumour cells. Moreover, 14f could induce G0/G1 arrest and apoptosis of HepG2 cells. From a mechanistic perspective, 14f regulated cell cycle-related proteins (CDK2, CDK4, CDK6, cyclin D1 and cyclin E1) as well mitochondrial apoptosis pathway-related proteins (Bax, Bcl-2, caspase 9, and caspase 3). These findings suggested that hybrid 14f serves as a promising anti-hepatoma lead compound that deserves further research.  相似文献   

13.
Targeting protein–protein interactions for therapeutic development involves designing small molecules to either disrupt or enhance a known PPI. For this purpose, it is necessary to compute reliably the effect of chemical modifications of small molecules on the protein–protein association free energy. Here we present results obtained using a novel thermodynamic free energy cycle, for the rational design of allosteric inhibitors of HIV‐1 integrase (ALLINI) that act specifically in the early stage of the infection cycle. The new compounds can serve as molecular probes to dissect the multifunctional mechanisms of ALLINIs to inform the discovery of new allosteric inhibitors. The free energy protocol developed here can be more broadly applied to study quantitatively the effects of small molecules on modulating the strengths of protein–protein interactions.  相似文献   

14.
15.
Twelve novel analogs of STAT3 inhibitor BP-1-102 were designed and synthesised with the aim to modify hydrophobic fragments of the molecules that are important for interaction with the STAT3 SH2 domain. The cytotoxic activity of the reference and novel compounds was evaluated using several human and two mouse cancer cell lines. BP-1-102 and its two analogs emerged as effective cytotoxic agents and were further tested in additional six human and two murine cancer cell lines, in all of which they manifested the cytotoxic effect in a micromolar range. Reference compound S3I-201.1066 was found ineffective in all tested cell lines, in contrast to formerly published data. The ability of selected BP-1-102 analogs to induce apoptosis and inhibition of STAT3 receptor-mediated phosphorylation was confirmed. The structure–activity relationship confirmed a demand for two hydrophobic substituents, i.e. the pentafluorophenyl moiety and another spatially bulky moiety, for effective cytotoxic activity and STAT3 inhibition.  相似文献   

16.
Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5–2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure–activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.  相似文献   

17.
Human–wildlife conflicts have intensified by many folds and at different levels in recent years. The same is true in the case of the Hindu Kush Himalaya (HKH), the roof of the world, and a region known for its wealth in biodiversity. We present a systematic literature review (SLR) using the search, appraisal, synthesis, and analysis (SALSA) framework; and for spatial and network analysis, we employed the VOSviewer software. The review—covering 240 peer—articles within a span of 27 years (from 1982 to 2019)—revealed that in the last decade, there was a 57% increase in publications but with a disproportionate geographical and thematic focus. About 82% of the research concentrated on protected areas and large carnivores and mega herbivores played a big role in such conflicts. About 53% of the studies were based on questionnaires, and the main driver reported was habitat disturbance of animals due to land‐cover change, urbanization, and increase in human population. On the management front, the studies reported the use of traditional protection techniques like guarding and fencing. Our analysis of 681 keywords revealed a prominent focus on ‘human‐wildlife conflict,’ ‘Nepal,’ ‘Bhutan,’ ‘Snow Leopard,’ and ‘Leopard’ indicating the issue linked with these species and countries. The involvement of 640 authors from 36 countries indicates increasing interest, and Nepal and India are playing key roles in the region. As for the spatial analysis that was conducted, while it showed regional variations, there were conspicuous limitations in terms of having a transboundary focus. Thus, particular attention ought to be paid to building transboundary partnerships and improving management interventions; there is also a pressing need to understand the patterns of human–wildlife convergence, especially involving meso‐mammals.  相似文献   

18.
  1. The Cormack–Jolly–Seber (CJS) model and its extensions have been widely applied to the study of animal survival rates in open populations. The model assumes that individuals within the population of interest have independent fates. It is, however, highly unlikely that a pair of animals which have formed a long‐term pairing have dissociated fates.
  2. We examine a model extension which allows animals who have formed a pair‐bond to have correlated survival and recapture fates. Using the proposed extension to generate data, we conduct a simulation study exploring the impact that correlated fate data has on inference from the CJS model. We compute Monte Carlo estimates for the bias, range, and standard errors of the parameters of the CJS model for data with varying degrees of survival correlation between mates. Furthermore, we study the likelihood ratio test of sex effects within the CJS model by simulating densities of the deviance. Finally, we estimate the variance inflation factor c^ for CJS models that incorporate sex‐specific heterogeneity.
  3. Our study shows that correlated fates between mated animals may result in underestimated standard errors for parsimonious models, significantly deflated likelihood ratio test statistics, and underestimated values of c^ for models taking sex‐specific effects into account.
  4. Underestimated standard errors can result in lowered coverage of confidence intervals. Moreover, deflated test statistics will provide overly conservative test results. Finally, underestimated variance inflation factors can lead researchers to make incorrect conclusions about the level of extra‐binomial variation present in their data.
  相似文献   

19.
In this paper, the interaction of genistein (GEN) and its four derivatives (GEN1–4) with bovine serum albumin (BSA) were investigated by ultraviolet–visible absorption spectra, fluorescence, synchronous fluorescence, three‐dimensional fluorescence spectroscopy, circular dichroism and molecular docking techniques. The experimental results showed that the intrinsic fluorescence of BSA was quenched by genisteins and was due to the formation of a genisteins–BSA complex. The quenching constant, binding constants, binding sites, intermolecular distances and thermodynamic properties were calculated at 298 K, 306 K and 310 K. Site marker competitive experiments indicated that the binding site of genisteins to BSA was mainly located in subdomain IIA. The conformational investigation showed that the presence of 0020 genisteins led to changes in the secondary structure of BSA and induced the slight unfolding of protein polypeptides, which confirmed some micro‐environmental and conformational changes of BSA molecules. Furthermore, the binding affinity decreased in the order GEN1 > GEN > GEN4 > GEN3 > GEN2, which revealed that different type and position of substituents of genistein significantly influenced the affinity of compounds to BSA. The number of hydroxyl groups on the ring A was the most important factor because increasing the hydroxyl groups on ring A clearly enhanced the binding affinity. However, trifluoromethylation did not much affect the affinity, alkylation, esterification and difluoromethylation slightly enhanced the binding affinity. The results obtained herein will provide valuable information about the pharmacokinetics at a molecular level and be a useful guideline for the further design of much more suitable genistein derivatives.  相似文献   

20.
Plasmin is best known as the key molecule in the fibrinolytic system, which is critical for clot lysis and can initiate matrix metalloproteinase (MMP) activation cascade. Along with MMP, plasmin is suggested to be involved in physiological processes that are linked to the risk of carcinoma formation. Plasmin inhibitors could be perceived as a promising new principle in the treatment of diseases triggered by plasmin. On the basis of the peptidic sequence derived from the synthetic plasmin substrate, a series of peptidic plasmin inhibitors possessing nitrile as warhead were prepared and evaluated for their inhibitory activities against plasmin and other serine proteases, plasma kallikrein and urokinase. The most potent peptidic inhibitors with the nitrile warhead exhibit the potency toward plasmin (IC50 = 7.7–11 μM) and are characterized by their selectivity profile against plasma kallikrein and urokinase. The results and molecular modeling of the peptidic inhibitor complexed with plasmin reveal that the P2 residue makes favorable contacts with the open binding pocket comprising the S2 and S3 subsites of plasmin. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号