首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

2.
ASK1 activates JNK and p38 mitogen-activated protein kinases and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. However, little is known about the mechanism of how ASK1 executes apoptosis. Here we investigated the roles of caspases and mitochondria in ASK1-induced apoptosis. We found that benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), a broad-spectrum caspase inhibitor, mostly inhibited ASK1-induced cell death, suggesting that caspases are required for ASK1-induced apoptosis. Overexpression of ASK1DeltaN, a constitutively active mutant of ASK1, induced cytochrome c release from mitochondria and activation of caspase-9 and caspase-3 but not of caspase-8-like proteases. Consistently, caspase-8-deficient (Casp8 (-/-)) cells were sensitive to ASK1-induced caspase-3 activation and apoptosis, suggesting that caspase-8 is dispensable for ASK1-induced apoptosis, whereas ASK1 failed to activate caspase-3 in caspase-9-dificient (Casp9 (-/-)) cells. Moreover, mitochondrial cytochrome c release, which was not inhibited by zVAD-fmk, preceded the onset of caspase-3 activation and cell death induced by ASK1. ASK1 thus appears to execute apoptosis mainly by the mitochondria-dependent caspase activation.  相似文献   

3.
Several studies have indicated that lipid peroxidation often occurs in response to oxidative stress, and that many aldehydic products including 4-hydroxy-2-nonenal (HNE) are formed when lipid hydroperoxides break down. In order to clarify the mechanism of oxidative stress-induced neuronal death in the nervous system, we investigated H(2)O(2)- and HNE-induced cell death pathways in HT22 cells, a mouse hippocampal cell line, under the same experimental conditions. Treatment with H(2)O(2) and HNE decreased the viability of these cells in a time- and concentration-dependent manner. In the cells treated with H(2)O(2), significant increases in the immunoreactivities of DJ-1 and nuclear factor-kappaB (NF-kappaB) subunits (p65 and p50) were observed in the nuclear fraction. H(2)O(2) also induced an increase in the intracellular concentration of Ca(2+), and cobalt chloride (CoCl(2)), a Ca(2+) channel inhibitor, suppressed the H(2)O(2)-induced cell death. In HNE-treated cells, none of these phenomena were observed; however, HNE adduct proteins were formed after exposure to HNE, but not to H(2)O(2). N-Acetyl-L-cysteine (NAC) suppressed both HNE-induced cell death and HNE-induced expression of HNE adduct proteins, whereas H(2)O(2)-induced cell death was not affected. These findings suggest that the mechanisms of cell death induced by H(2)O(2) different from those induced by HNE in HT22 cells, and that HNE adduct proteins play an important role in HNE-induced cell death. It is also suggested that the pathway for H(2)O(2)-induced cell death in HT22 cells does not involve HNE production.  相似文献   

4.
This study was designed to elucidate the mechanisms leading to down-regulation of the Akt/protein kinase B (PKB) survival pathway during H2O2-induced cell death. H2O2 produced early activation of Akt/PKB and also DNA damage that was followed by stabilization of p53 levels, formation of reactive oxygen species (ROS), and generation of ceramide through activation of a glutathione-sensitive neutral sphingomyelinase. These events correlated with long term dephosphorylation and subsequent degradation of Akt. A membrane-targeted active Akt version attenuated apoptosis but not necrosis induced by H2O2 and was more resistant to dephosphorylation and proteolysis induced by apoptotic concentrations of H2O2. Proteolysis of Akt was prevented by exogenous addition of glutathione, indicating a role of ROS and ceramide in Akt degradation. However, Akt was degraded similarly in cells transfected with wild type and dominant negative p53 mutant, indicating that degradation of Akt under oxidative injury may be p53-independent. Specific inhibitors of caspase groups I and III prevented proteolysis of Akt/PKB and poly(ADP-ribose) polymerase in cells submitted to apoptotic but not necrotic H2O2 concentrations. Surprisingly, in caspase-3-deficient MCF-7 cells Akt was more sensitive to H2O2-induced degradation than the caspase-3 substrate poly(ADP-ribose) polymerase. Moreover, the Akt/PKB double mutant Akt(D108A,D119A), which is not cleaved by caspase-3, and a triple mutant (D453A,D455A,D456A), which lacks the consensus sequence for caspase-3 cleavage, were also degraded in H2O2-treated cells. Our results suggest that strong oxidants generate intracellular ROS and ceramide which in term lead to down-regulation of Akt by dephosphorylation and caspase-3-independent proteolysis.  相似文献   

5.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

6.
L Sun  HY Yau  WY Wong  RA Li  Y Huang  X Yao 《PloS one》2012,7(8):e43186
Melastatin-like transient receptor potential channel 2 (TRPM2) is an oxidant-sensitive and cationic non-selective channel that is expressed in mammalian vascular endothelium. Here we investigated the functional role of TRPM2 channels in hydrogen peroxide (H(2)O(2))-induced cytosolic Ca(2+) ([Ca(2+)](i)) elavation, whole-cell current increase, and apoptotic cell death in murine heart microvessel endothelial cell line H5V. A TRPM2 blocking antibody (TM2E3), which targets the E3 region near the ion permeation pore of TRPM2, was developed. Treatment of H5V cells with TM2E3 reduced the [Ca(2+)](i) rise and whole-cell current change in response to H(2)O(2). Suppressing TRPM2 expression using TRPM2-specific short hairpin RNA (shRNA) had similar inhibitory effect. H(2)O(2)-induced apoptotic cell death in H5V cells was examined using MTT assay, DNA ladder formation analysis, and DAPI-based nuclear DNA condensation assay. Based on these assays, TM2E3 and TRPM2-specific shRNA both showed protective effect against H(2)O(2)-induced apoptotic cell death. TM2E3 and TRPM2-specific shRNA also protect the cells from tumor necrosis factor (TNF)-α-induced cell death in MTT assay. In contrast, overexpression of TRPM2 in H5V cells resulted in an increased response in [Ca(2+)](i) and whole-cell currents to H(2)O(2). TRPM2 overexpression also aggravated the H(2)O(2)-induced apoptotic cell death. Downstream pathways following TRPM2 activation was examined. Results showed that TRPM2 activity stimulated caspase-8, caspase-9 and caspase-3. These findings strongly suggest that TRPM2 channel mediates cellular Ca(2+) overload in response to H(2)O(2) and contribute to oxidant-induced apoptotic cell death in vascular endothelial cells. Down-regulating endogenous TRPM2 could be a means to protect the vascular endothelial cells from apoptotic cell death.  相似文献   

7.
The impact of muscarinic receptor stimulation was examined on apoptotic signaling induced by DNA damage, oxidative stress, and mitochondrial impairment. Exposure of human neuroblastoma SH-SY5Y cells to the DNA-damaging agent camptothecin increased p53 levels, activated caspase-3, and caused cell death. Pretreatment with oxotremorine-M, a selective agonist of muscarinic receptors that are expressed endogenously in these cells, did not affect the accumulation of p53 but greatly attenuated caspase-3 activation and protected from cell death to nearly the same extent as treatment with a general caspase inhibitor. Treatment with 50-200 microm H(2)O(2) caused the activation of caspase-3 beginning after 2-3 h, followed by eventual cell death. Oxotremorine-M pretreatment protected cells from H(2)O(2)-induced caspase-3 activation and death, and this was equivalent to protection afforded by a caspase inhibitor. Muscarinic receptor stimulation also protected cells from caspase-3 activation induced by exposure to rotenone, a mitochondrial complex 1 inhibitor, but no protection was evident from staurosporine-induced caspase-3 activation. The mechanism of protection afforded by muscarinic receptor activation from camptothecin-induced apoptotic signaling involved blockade of mitochondrial cytochrome c release associated with a bolstering of mitochondrial bcl-2 levels and blockade of the translocation of Bax to mitochondria. Likely the most proximal of these events to muscarinic receptor activation, mitochondrial Bax accumulation, also was attenuated by oxotremorine-M treatment after treatment with H(2)O(2) or rotenone. These results demonstrate that stimulation of muscarinic receptors provides substantial protection from DNA damage, oxidative stress, and mitochondrial impairment, insults that may be encountered by neurons in development, aging, or neurodegenerative diseases. These findings suggest that neurotransmitter-induced signaling bolsters survival mechanisms, and inadequate neurotransmission may exacerbate neuronal loss.  相似文献   

8.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

9.
ARC is an apoptotic regulatory protein expressed almost exclusively in myogenic cells. It contains a caspase recruitment domain (CARD) through which it has been shown to block the activation of some initiator caspases. Because ARC also blocks caspase-independent events associated with apoptosis, such as hypoxia-induced cytochrome c release, we examined its role in cell death triggered by exposure to hydrogen peroxide (H(2)O(2)) in the myogenic cell line, H9c2. Cell death in this model was caspase-independent and characterized by dose-dependent reduction in ARC expression accompanied by disruption of the mitochondrial membrane potential (Delta psi(m)) and loss of plasma membrane integrity, typical of necrotic cell death. Ectopic expression of ARC prevented both H(2)O(2)-induced mitochondrial dysfunction and cell death without affecting the stress kinase response, suggesting that ARCs protective effects were downstream of early signaling events and not due to quenching of H(2)O(2). ARC was also effective in blocking H(2)O(2)-induced loss of membrane integrity and/or disruption of Delta psi(m) in two human cell lines in which it is not normally expressed. These results demonstrate that, in addition to its ability to block caspase-dependent and -independent events in apoptosis, ARC also prevents necrosis-like cell death via the preservation of mitochondrial function.  相似文献   

10.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

11.
Exposure of phosphatidylserine (PS) on the outer leaflet of the plasma membrane is a key feature of apoptosis. As the signals underlying these phenomena are unknown, it is generally assumed that PS exposure is a consequence of caspase activation, another hallmark of apoptosis. In this study we investigated the role of caspases in PS externalization during apoptosis of activated PBL triggered by drugs (etoposide, staurosporine), CD95 engagement, or IL-2 withdrawal. Anti-CD95 mAb induces a rapid activation of caspases, followed by PS exposure and mitochondrial transmembrane potential (DeltaPsim) disruption. In contrast, etoposide (ETO), staurosporine (STS), or IL-2 withdrawal triggers concomitant caspase activation, PS exposure, and DeltaPsim disruption. Such kinetics suggest that PS exposure could be independent of caspase activation. As expected, in activated PBL treated by anti-CD95 mAb, the pan-caspase inhibitor Cbz-Val-Ala-Asp(OMe)-fluoromethylketone and the caspase-8 inhibitor Cbz-Leu-Glu-Thr-Asp(OMe)-fluoromethylketone, but not the caspase-9 inhibitor Cbz-Leu-Glu-His-Asp(OMe)-fluoromethylketone, inhibit PS externalization and DeltaPsim disruption. Surprisingly, during apoptosis induced by ETO, STS, or IL-2 withdrawal, none of those caspase inhibitors prevents PS externalization or DeltaPsim disruption, whereas they all inhibit DNA fragmentation as well as the morphological features of nuclear apoptosis. In Jurkat and H9 T cell lines, as opposed to activated PBL, PS exposure is inhibited by Cbz-Val-Ala-Asp(OMe)-fluoromethylketone during apoptosis induced by CD95 engagement, ETO, or STS. Thus, caspase-independent PS exposure occurs in primary T cells during apoptosis induced by stimuli that do not trigger death receptors.  相似文献   

12.
Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN(-/-)) mice were treated in vitro with H(2)O(2) to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN(-/-) cells but was increased to only 20% in WT cells. In contrast, after 1-8 h of treatment with H(2)O(2), the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN(-/-) cells. Electron microscopy of WT cells treated with H(2)O(2) showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H(2)O(2)-treated OPN(-/-) cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN(-/-) and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN(-/-) cells by approximately 30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN(-/-) cells was not altered. Restoration of OPN expression in OPN(-/-) fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H(2)O(2) treatment. Thus H(2)O(2)-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.  相似文献   

13.
14.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   

15.
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder resulting in selective neuronal loss and dysfunction in the striatum and cortex. The molecular pathways leading to the selectivity of neuronal cell death in HD are poorly understood. Proteolytic processing of full-length mutant huntingtin (Htt) and subsequent events may play an important role in the selective neuronal cell death found in this disease. Despite the identification of Htt as a substrate for caspases, it is not known which caspase(s) cleaves Htt in vivo or whether regional expression of caspases contribute to selective neuronal cells loss. Here, we evaluate whether specific caspases are involved in cell death induced by mutant Htt and if this correlates with our recent finding that Htt is cleaved in vivo at the caspase consensus site 552. We find that caspase-2 cleaves Htt selectively at amino acid 552. Further, Htt recruits caspase-2 into an apoptosome-like complex. Binding of caspase-2 to Htt is polyglutamine repeat-length dependent, and therefore may serve as a critical initiation step in HD cell death. This hypothesis is supported by the requirement of caspase-2 for the death of mouse primary striatal cells derived from HD transgenic mice expressing full-length Htt (YAC72). Expression of catalytically inactive (dominant-negative) forms of caspase-2, caspase-7, and to some extent caspase-6, reduced the cell death of YAC72 primary striatal cells, while the catalytically inactive forms of caspase-3, -8, and -9 did not. Histological analysis of post-mortem human brain tissue and YAC72 mice revealed activation of caspases and enhanced caspase-2 immunoreactivity in medium spiny neurons of the striatum and the cortical projection neurons when compared to controls. Further, upregulation of caspase-2 correlates directly with decreased levels of brain-derived neurotrophic factor in the cortex and striatum of 3-month YAC72 transgenic mice and therefore suggests that these changes are early events in HD pathogenesis. These data support the involvement of caspase-2 in the selective neuronal cell death associated with HD in the striatum and cortex.  相似文献   

16.
Contribution of the main caspases in cytotoxic effects induced by the monoclonal antibody 14G2a specific to the tumor-associated ganglioside GD2 was studied in the EL-4 mouse lymphoma cells. The constitutive expression of the procaspase genes was found in the EL-4 cells. Incubation of the cells with the 14G2a antibodies did not result in increasing of the procaspase synthesis. We also demonstrated with the use of fluorescently labeled substrates of caspases that the procaspase enzymatic activity was not enhanced. At an equal level of cell death, activities of caspase-3 and caspase-9 in the cells which were incubated with the 14G2a antibodies were 7.5 and 3 times lower, respectively, than those in the staurosporine-treated cells. The pan-caspase inhibitor (Z-VAD-FMK) and the caspase-3 inhibitor decreased the cytotoxic effects induced by the 14G2a antibodies by 9–16 and 6–13%, respectively. The staurosporine-induced level of the apoptosis decreased by 55–65% under the same conditions. Inhibitors of the initiation caspase-8 and caspase-9 had no influence on the antibody-induced cell death. The inhibitory analysis also demonstrated that the caspases were not involved in the triggering of the initial stages of the antibody-induced cell death such as apoptotic volume decrease and permeabilization of the cell plasma membrane. Thus, caspases did not play a key role in the cell death induced by the anti-GD2 antibodies, and their slight enzymatic activity did not determine the main mechanism of cell death mediated through the tumor-associated ganglioside GD2.  相似文献   

17.
Myeloic cells express a peculiar surface receptor for extracellular ATP, called the P2Z/P2X7 purinoreceptor, which is involved in cell death signalling. Here, we investigated the role of caspases, a family of proteases implicated in apoptosis and the cytokine secretion. We observed that extracellular ATP induced the activation of multiple caspases including caspase-1, -3 and -8, and subsequent cleavage of the caspase substrates PARP and lamin B. Using caspase inhibitors, it was found that caspases were specifically involved in ATP-induced apoptotic damage such as chromatin condensation and DNA fragmentation. In contrast, inhibition of caspases only marginally affected necrotic alterations and cell death proceeded normally whether or not nuclear damage was blocked. Our results therefore suggest that the activation of caspases by the P2Z receptor is required for apoptotic but not necrotic alterations of ATP-induced cell death.  相似文献   

18.
We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.  相似文献   

19.
20.
In the present study, baicalein (BE) but not its glycoside, baicalin (BI), induced heme oxygenase-1 (HO-1) gene expression at both the mRNA and protein levels, and the BE-induced HO-1 protein was blocked by adding cycloheximide (CHX) or actinomycin D (Act D). Activation of ERK, but not JNK or p38, proteins via induction of phosphorylation in accordance with increasing intracellular peroxide levels was detected in BE-treated RAW264.7 macrophages. The addition of the ERK inhibitor, PD98059, (but not the p38 inhibitor, SB203580, or the JNK inhibitor, SP600125) and the chemical antioxidant, N-acetyl cysteine (NAC), significantly reduced BE-induced HO-1 protein expression by respectively blocking ERK protein phosphorylation and intracellular peroxide production. Additionally, BE but not BI effectively protected RAW264.7 cells from hydrogen peroxide (H(2)O(2))-induced cytotoxicity, and the preventive effect was attenuated by the addition of the HO inhibitor, SnPP, and the ERK inhibitor, PD98059. H(2)O(2)-induced apoptotic events including hypodiploid cells, DNA fragmentation, activation of caspase 3 enzyme activity, and a loss in the mitochondrial membrane potential with the concomitant release of cytochrome c from mitochondria to the cytosol were suppressed by the addition of BE but not BI. Blocking HO-1 protein expression by the HO-1 antisense oligonucleotide attenuated the protective effect of BE against H(2)O(2)-induced apoptosis by suppressing HO-1 gene expression in macrophages. Overexpression of the HO-1 protein inhibited H(2)O(2)-induced apoptotic events such as DNA fragmentation and hypodiploid cells by reducing intracellular peroxide production induced by H(2)O(2), compared with those events in neo-control (neo-RAW264.7) cells. In addition, CO, but not bilirubin and biliverdin, addition inhibits H(2)O(2)-induced cytotoxicity in macrophages. It suggests that CO can be responsible for the protective effect associated with HO-1 overexpression. The notion of induction of HO-1 gene expression through a ROS-dependent manner suppressing H(2)O(2)-induced cell death is identified in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号