首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defect of the purine salvage enzyme, hypoxanthine phosphoribosyl transferase (HPRT), results in Lesch-Nyhan disease (LND). It is unknown how the metabolic defect translates into the severe neuropsychiatric phenotype characterized by self-injurious behavior, dystonia and mental retardation. There are abnormalities in GTP, UTP and CTP concentrations in HPRT-deficient cells. Moreover, GTP, ITP, XTP, UTP and CTP differentially support Gs-protein-mediated adenylyl cyclase (AC) activation. Based on these findings we hypothesized that abnormal AC regulation may constitute the missing link between HPRT deficiency and the neuropsychiatric symptoms in LND. To test this hypothesis, we studied AC activity in membranes from primary human skin and immortalized mouse skin fibroblasts, mouse Neuro-2a neuroblastoma cells and rat B103 neuroblastoma cells. In B103 control membranes, GTP, ITP, XTP and UTP exhibited profound stimulatory effects on basal AC activity that approached the effects of hydrolysis-resistant nucleotide analogs. In HPRT- membranes, the stimulatory effects of GTP, ITP, XTP and UTP were strongly reduced. Similarly, in human and mouse skin fibroblast membranes we also observed a decrease in GTP-stimulated AC activity in HPRT-deficient cells compared with the respective controls. In mouse Neuro-2a neuroblastoma membranes, AC activity in the presence of GTP was below the detection limit of the assay. We discuss several possibilities to explain the abnormalities in AC regulation in HPRT deficiency that encompass various species and cell types.  相似文献   

2.
A purine nucleotide (inosinate) cycle is demonstrated with human lymphoblasts. The lymphoblast requires approximately 50 nmol of purine/10(6) cell increment. When the inosinate cycle is interrupted by the genetic, severe deficiency of either or both purine nucleoside phosphorylase (PNP) or hypoxanthine phosphoribosyltransferase (HPRT), purine accumulates in the culture medium as inosine, guanosine, deoxyinosine, and deoxyguanosine (PNP deficiency or PNP, HPRT deficiency) or hypoxanthine and guanine (HPRT deficiency). This accumulation represents an additional 25 to 32 nmol of purine which must be synthesized per 10(6) cell increment. PNP-deficient lymphoblasts have PPRibP contents characteristic of normal lymphoblasts, about 20 to 25 pmol/10(6) cells. HPRT-deficient lymphoblasts have four times higher PPRibP contents. The lymphoblast deficient for both PNP and HPRT has only a marginal elevation of PPRibP content, 1.5 times normal values. The elevated PPRibP content of HPRT-deficient cells reflects the efficient, unilateral reutilization of the ribose moiety of purine ribonucleotides and is not a cause of purine overproduction. Purine overproduction characterizing PNP-deficient lymphoblasts appears similar to overproduction from deficiency of HPRT, i.e. a break in the inosinate cycle rather than overactive de novo purine synthesis.  相似文献   

3.
The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.  相似文献   

4.
Mutations in the gene encoding the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease, a neurodevelopmental disorder characterized by cognitive, neurological, and behavioral abnormalities. Despite detailed knowledge of the enzyme's function, the key pathophysiological changes that accompany loss of purine recycling are unclear. To facilitate delineating the consequences of HPRT deficiency, four independent HPRT-deficient sublines of the human dopaminergic neuroblastoma, SK-N-BE(2) M17, were isolated by targeted mutagenesis with triple helix-forming oligonucleotides. As a group, these HPRT-deficient cells showed several significant abnormalities: (i) impaired purine recycling with accumulation of hypoxanthine, guanine, and xanthine, (ii) reduced guanylate energy charge and GTP:GDP ratio, but normal adenylate energy charge and no changes in any adenine nucleotide ratios, (iii) increased levels of UTP and NADP+, (iv) reduced DOPA decarboxylase, but normal monoamines, and (v) reduction in cell soma size. These cells combine the analytical power of multiple lines and a human, neuronal origin to provide an important tool to investigate the pathophysiology of HPRT deficiency.  相似文献   

5.
6.
Nucleotide metabolism was studied in erythrocytes of a mentally retarded child and family members. Partial hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency was found in the propositus and an asymptomatic maternal uncle. Studies in crude lysates demonstrated decreased apparent V(max) and slightly decreased apparent K(m) for hypoxanthine in both HPRT-deficient subjects. Genomic DNA analysis revealed a single nucleotide change with leucine-147 to phenylalanine substitution in both subjects; mother and grandmother were heterozygous carriers of the same defect. This new variant has been termed HPRT(Potenza). Increased erythrocyte concentration of NAD and rate of synthesis by intact erythrocytes were found in the patient; increased activities of nicotinic acid phosphoribosyltransferase (NAPRT) and NAD synthetase (NADs) were demonstrated in erythrocyte lysates, with normal apparent K(m) for their substrates and increased V(max). These alterations were not found in any member of the family, including the HPRT-deficient uncle. These findings show multiple derangement of nucleotide metabolism associated with partial HPRT deficiency. The enzyme alteration was presumably not the cause of neurological impairment since no neurological symptoms were found in the HPRT-deficient uncle, whereas they were present in the propositus' elder brother who had normal HPRT activity.  相似文献   

7.
Lesch-Nyhan disease (LND) is a severe X-linked neurological disorder caused by a deficiency of hypoxanthine phosphoribosyltransferase (HPRT). In contrast, HPRT-deficiency in the mouse does not result in the profound phenotypes such as self-injurious behavior observed in humans, and the genetic basis for this phenotypic disparity between HPRT-deficient humans and mice is unknown. To test the hypothesis that HPRT deficiency is modified by the presence/absence of phosphoribosyltransferase domain containing 1 (PRTFDC1), a paralog of HPRT that is a functional gene in humans but an inactivated pseudogene in mice, we created transgenic mice that express human PRTFDC1 in wild-type and HPRT-deficient backgrounds. Male mice expressing PRTFDC1 on either genetic background were viable and fertile. However, the presence of PRTFDC1 in the HPRT-deficient, but not wild-type mice, increased aggression as well as sensitivity to a specific amphetamine-induced stereotypy, both of which are reminiscent of the increased aggressive and self-injurious behavior exhibited by patients with LND. These results demonstrate that PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse and could therefore have important implications for unraveling the molecular etiology of LND.  相似文献   

8.
Two different single nucleotide transitions of hypoxanthine-guanine phosphoribosyltransferase (HPRT) were identified in a Japanese patient with Lesch-Nyhan syndrome (LNS) and a patient with hereditary gout. HPRT enzyme activities in the two patients were severely deficient, but the size and amount of mRNA were normal according to Northern analysis. Entire coding regions of HPRT cDNAs were amplified by PCR and sequenced. A G-to-A substitution at base 208 in exon 3, which predicted glycine 70 to arginine, was detected in the LNS patient (identical mutation with HPRTUtrecht). A C-to-A substitution at base 73 in exon 2, which predicted proline 25 to threonine, was detected in the gout patient (designated HPRTYonago). We transfected normal HPRT cDNA, mutant cDNA with HRPTUtrecht or mutant cDNA with HPRTYonago, respectively, to HPRT-deficient mouse cells and isolated permanent expression cell lines. The HPRT-deficient mouse cells had no detectable HPRT activity and a very low amount of HPRT mRNA. When the HPRT-deficient mouse cells were transfected with normal human cDNA, HPRT enzyme activity increased to 21.8% that of normal mouse cells. The mouse cells transfected with HPRTUtrecht showed no increase in HPRT activity; however, when the mouse cells were transfected with HPRTYonago, the activity increased to 2.4% that of normal activity. The proliferative phenotypes of these cells in HAT medium and in medium containing 6-thioguanine were similar to those of skin fibroblasts from the patients. This series of studies confirmed that each of the two point mutations was responsible for the decreases in HPRT enzyme activity, and the proliferative phenotypes in HAT medium and medium containing 6-thioguanine.  相似文献   

9.
Lesch-Nyhan syndrome results from a deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). It is manifest by behavioral abnormalities, including self-mutilation, and evidence of abnormal 3,4-dihydroxyphenylethylamine (dopamine) metabolism. To assess whether an HPRT deficiency in a dopaminergic cell can adversely affect dopamine metabolism in that cell, dopamine metabolism was examined in HPRT-deficient variants of PC12 pheochromocytoma cells and in cells that had regained HPRT activity by virtue of transformation with a recombinant retrovirus containing the human gene for HPRT. There was no correlation between HPRT activity and endogenous dopamine levels, dopamine uptake, dopamine release, or monoamine oxidase activity. Transformation with the HPRT retrovirus did not adversely affect dopamine metabolism.  相似文献   

10.
Cellular resistance to the cytotoxic purine analogues 8-azaguanine (AG) and 6-thioguanine (TG) is usually mediated by a mutation leading to the loss or reduction in hypoxanthine phosphoribosyltransferase (HPRT) activity. However, stable AG-resistant variants have often been shown to contain wild-type levels of HPRT, while cellular resistance to TG is always accompanied by a profound deficiency in HPRT activity. Such AG-resistant, HPRT-positive cells are still sensitive to TG. To investigate the basis of this differential sensitivity, we examined the inhibition of the HPRT activity by AG and TG in whole cells, in cell-free extracts, and with purified mouse HPRT. In addition, the relative incorporation and utilization of AG and TG by L929 cells were determined under a variety of culture conditions. Results show that, compared to TG, AG is generally a very poor substrate for HPRT. Incorporation of radioactive AG by HPRT-positive cells was extremely sensitive to the free purine concentrations in the medium, so that under the usual culture conditions employing undialyzed serum, cellular uptake and utilization was minimal even when relatively high levels of AG were present. In contrast, the incorporation of radioactive TG was comparable to that of a natural substrate, hypoxanthine. These results indicate that the differential cellular sensitivity to AG and TG is due to the difference between these two guanine analogues as substrates of HPRT. Additional data indicate also that cellular resistance to TG is mediated exclusively by HPRT deficiency, but resistance to very high levels of AG may result through at least two other mechanisms not involving HPRT deficiency. These observations may help resolve some of the conflicting data in the literature, and demonstrate that TG is a better selective agent for the HPRT-deficient phenotype.  相似文献   

11.
Guo LT  Friedmann T  King CC 《Proteomics》2007,7(21):3867-3869
Many diseases of the mammalian CNS, including Parkinson's (PD) and Lesch Nyhan disease (LND), are associated with programmatic neurodegeneration or dysfunction of dopaminergic neurons in the mesencephalon, the nigrostriatal pathway, and its projections in the striatum [1-4]. Proteomic studies on brain tissue of both animal models and human PD patients have provided evidence for dysfunction and damage of many pathways, including oxidative stress-related damage, ubiquitin-proteasome dysfunction, mitochondrial energy metabolism deficiencies, and synaptic function [5-11]. To date no such proteomic studies have been reported in the related and rare basal ganglia disorder LND, a developmental rather than a neurodegenerative neurological disorder caused by deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) that regulates a major step in the purine salvage pathway [12]. Many studies have demonstrated that the both human LND patients and a mouse knockout model of HPRT deficiency have significantly reduced levels and uptake of dopamine in the striatum [4, 13-16] that is likely to be the principal cause of the CNS disorder. The precise molecular and cellular mechanisms that underlie this neurotransmitter defect are unknown.  相似文献   

12.
13.
The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) cause the severe neurodevelopmental Lesch Nyhan Disease (LND) are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA) and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS) cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA) multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer''s and Huntington''s disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.  相似文献   

14.
15.
Lesch-Nyhan disease (LND) is a rare X-linked recessive disorder caused by deficiency of the purine salvage enzyme hypoxanthine–guanine phosphoribosyltransferase (HPRT), encoded by the HPRT1. To date, nearly all types of mutations have been reported in the whole gene; however, duplication mutations are rare. We here report the case of a 9-month-old boy with LND. He showed developmental delay, athetosis, and dystonic posture from early infancy, but no self-injurious behaviors. Hyperuricemia was detected, and his HPRT enzyme activity in erythrocytes was completely deficient. A novel duplication mutation (c.372dupT, c.372_374 TTT > c.372_375 TTTT) was identified in exon 4 of the HPRT1, which causes aberrant splicing. This is the third case of a duplication mutation in the HPRT1 that causes splicing error.  相似文献   

16.
Immunochemical methods were used to identify the genetic origin of hypoxanthine phosphoribosyltransferase (HPRT) expressed in heteroploid, HPRT-deficient mouse (A9) cells and Chinese hamster ovary (K627) cells, after these cells were fused with chick embryo erythrocytes and selected for resistance to hypoxanthine-aminopterin-thymidine (HAT) medium. All of the HAT-selected clones produced HPRT activity which was immunoprecipitable by an antiserum specific for chick HPRT, but not by an antiserum specific for mouse and hamster HPRT. Furthermore, the HPRT activity in these clones was electrophoretically indistinguishable from chick liver HPRT and clearly different from mouse liver HPRT. These data provide evidence that the HPRT activity expressed in cell hybrids produced by the fusion of HPRT-negative mammalian cells and chick erythrocytes containing genetically inactive nuclei is indeed coded by the chick HPRT gene and that an avian gene can be stably incorporated and correctly expressed in a mammalian cells.  相似文献   

17.
Abstract: Human glioma cell extracts were found to elicit a marked growth-promoting activity on human neuroblastoma cells. This activity was also detected in the extracts of neurofibroma type 1 (NF1; von Recklinghausen neurofibromatosis) comprising aberrant Schwann cell growth. The purified substance from the NF1 extracts by HPLC on ODS columns was identical to a pyrimidine nucleoside, uridine, the chemical structure of which was identified by gas chromatography-mass spectrometry. The authentic uridine showed a strong growth-promoting activity on human neuroblastoma cells. Other purine or pyrimidine nucleotides, their derivatives, and ribose sources for their syntheses were employed to test the activity; a purine nucleoside, adenosine, showed a stronger activity than uridine. The current study raises the possibility that human neuroblastoma cells may be affected by dysfunctions of the de novo pathway of both purine and pyrimidine nucleotide biosyntheses.  相似文献   

18.
Electroporation is a valuable tool for nucleic acid delivery because it can be used for a wide variety of cell types. Many scientists are shifting toward the use of cell types that are more relevant to in vivo applications, including primary cells, which are considered difficult to transfect. The ability to electroporate these cell types with nucleic acid molecules of interest at a relatively high efficiency while maintaining cell viability is essential for elucidating the pathway(s) in which a gene product is involved. We present data demonstrating that by optimizing electroporation parameters, nucleic acid molecules can be delivered in a highly efficient manner. We display transfection results for primary and difficult-to-transfect cell types including human primary fibroblasts, human umbilical vein endothelial cells, Jurkat cells, and two neuroblastoma cell lines [SK-N-SH (human) and Neuro-2A (mouse)] with plasmid DNAs and siRNAs. Our data demonstrate that by determining proper electroporation conditions, glyceraldehyde phosphate dehydrogenase mRNA was silenced in Jurkat cells when compared with negative control siRNA electroporations as early as 4 h post-transfection. Other experiments demonstrated that optimized electroporation conditions using a fluorescently labeled transfection control siRNA resulted in 75% transfection efficiency for Neuro-2A, 93% for human primary fibroblasts, and 94% for HUVEC cells, as analyzed by flow cytometry.  相似文献   

19.
Five mycoplasma species most frequently isolated from cell cultures were tested for the presence of endogenous hypoxanthine phosphoribosyl-transferase (HPRT) activity. All of the five, cultured in cell-free medium, contained variable but significant levels of HPRT. Two strains of M. hyorhinis exhibited a 13-fold difference in their specific HPRT activity. When infected with any of these mycoplasma species, HPRT-deficient mouse cell mutants rapidly acquired a cell-associated HPRT activity; however, the cells remained sensitive to HAT medium and resistant to 6-thioguanine. On the other hand, normal HPRT-positive cells deliberately infected with the mycoplasmas uniformly became sensitive to HAT medium. The apparent transfer of mycoplasma-specific HPRT activity to HPRT-deficient cells may be used as a sensitive measure of cell infection by these mycoplasma strains. The HPRT activities of mycoplasmas share several common properties so that they can be distinguished easily from the mammalian HPRT isozymes. Compared to the animal cell enzymes, the mycoplasmal HPRT activities are less heat stable, more strongly inhibited by 6-thioguanine, and in general migrate more slowly in electrophoresis at a neutral pH.  相似文献   

20.
Lesch–Nyhan disease (LND) is caused by lack of hypoxanthine–guanine phosphoribosyltransferase (HPRT) activity. Mutations in HPRT1 gene show variability in type and location within the gene, and in certain patients the HPRT coding sequence is normal and the molecular defect cannot be found. These patients presented a decreased HPRT1 expression of unknown cause. This is the first report of a carrier and prenatal diagnosis of LND due to a defect in HPRT gene expression regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号