首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although evidence indicates that environmental factors play a major role in precipitating systemic autoimmunity in genetically susceptible individuals, little is known about the mechanisms involved. Certain heavy metals, such as mercury, are potent environmental immunostimulants that produce a number of immunopathologic sequelae, including lymphoproliferation, hypergammaglobulinemia, and overt systemic autoimmunity. Predisposition to such metal-induced immunopathology has been shown to be influenced by both MHC and non-MHC genes, as well as susceptibility to spontaneous lupus, in mice and other experimental animals. Among the various mouse strains examined to date, the DBA/2 appears to uniquely lack susceptibility to mercury-induced autoimmunity (HgIA), despite expressing a susceptible H-2 haplotype (H-2d). To define the genetic basis for this trait, two genome-wide scans were conducted using F2 intercrosses of the DBA/2 strain with either the SJL or NZB strains, both of which are highly susceptible to HgIA. A single major quantitative trait locus on chromosome 1, designated Hmr1, was shown to be common to both crosses and encompassed a region containing several lupus susceptibility loci. Hmr1 was linked to glomerular immune complex deposits and not autoantibody production, suggesting that DBA/2 resistance to HgIA may primarily involve the later stages of disease pathogenesis. Identification and characterization of susceptibility/resistance genes and mechanisms relevant to the immunopathogenesis of mercury-induced autoimmunity should provide important insights into the pathogenesis of autoimmunity and may reveal novel targets for intervention.  相似文献   

2.
Susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination (TMEVD), a mouse model for multiple sclerosis (MS), is genetically controlled. Through a mouse-human comparative mapping approach, identification of candidate susceptibility loci for MS based on the location of TMEVD susceptibility loci may be possible. Composite interval mapping (CIM) identified quantitative trait loci (QTL) controlling TMEVD severity in male and female backcross populations derived from susceptible DBA/2J and resistant BALBc/ByJ mice. We report QTL on chromosomes 1, 5, 15, and 16 affecting male mice. In addition, we identified two QTL in female mice located on chromosome 1. Our results support the existence of three linked sex-specific QTL on chromosome 1 with opposing effects on the severity of the clinical signs of TMEV-induced disease in male and female mice.  相似文献   

3.
Identification of Hepatocarcinogen-Resistance Genes in Dba/2 Mice   总被引:6,自引:0,他引:6       下载免费PDF全文
Male DBA/2J mice are ~20-fold more susceptible than male C57BL/6J mice to hepatocarcinogenesis induced by perinatal treatment with N,N-diethylnitrosamine (DEN). In order to elucidate the genetic control of hepatocarcinogenesis in DBA/2J mice, male BXD recombinant inbred, D2B6F(1) X B6 backcross, and D2B6F(2) intercross mice were treated at 12 days of age with DEN and liver tumors were enumerated at 32 weeks. Interestingly, the distribution of mean tumor multiplicities among BXD recombinant inbred strains indicated that hepatocarcinogen-sensitive DBA/2 mice carry multiple genes with opposing effects on the susceptibility to liver tumor induction. By analyzing D2B6F(1) X B6 backcross and D2B6F(2) intercross mice for their liver tumor multiplicity phenotypes and for their genotypes at simple sequence repeat marker loci, we mapped two resistance genes carried by DBA/2J mice, designated Hcr1 and -2, to chromosomes 4 and 10, respectively. Hcr1 and Hcr2 resolved the genetic variance in the backcross population well, indicating that these resistance loci are the major determinants of the variance in the backcross population. Although our collection of 100 simple sequence repeat markers allowed linkage analysis for ~95% of the genome, we failed to map any sensitivity alleles for DBA/2J mice. Thus, it is likely that the susceptibility of DBA/2J mice is the consequence of the combined effects of multiple sensitivity loci.  相似文献   

4.
The lupus-like disease that develops in hybrids of NZB and NZW mice is genetically complex, involving both MHC- and non-MHC-encoded genes. Studies in this model have indicated that the H2d/z MHC type, compared with H2d/d or H2z/z, is critical for disease development. C57BL/6 (B6) mice (H2b/b) congenic for NZB autoimmunity 2 (Nba2), a NZB-derived susceptibility locus on distal chromosome 1, produce autoantibodies to nuclear Ags, but do not develop kidney disease. Crossing B6.Nba2 to NZW results in H2b/z F1 offspring that develop severe lupus nephritis. Despite the importance of H2z in past studies, we found no enhancement of autoantibody production or nephritis in H2b/z vs H2b/b B6.Nba2 mice, and inheritance of H2z/z markedly suppressed autoantibody production. (B6.Nba2 x NZW)F1 mice, compared with MHC-matched B6.Nba2 mice, produced higher levels of IgG autoantibodies to chromatin, but not to dsDNA. Although progressive renal damage with proteinuria only occurred in F1 mice, kidneys of some B6.Nba2 mice showed similar extensive IgG and C3 deposition. We also studied male and female B6.Nba2 and F1 mice with different MHC combinations to determine whether increased susceptibility to lupus among females was also expressed within the context of the Nba2 locus. Regardless of MHC or the presence of NZW genes, females produced higher levels of antinuclear autoantibodies, and female F1 mice developed severe proteinuria with higher frequencies. Together, these studies help to clarify particular genetic and sex-specific influences on the pathogenesis of lupus nephritis.  相似文献   

5.
Epilepsy is one of the most common but genetically complex neurological disorders in humans. Identifying animal models that recapitulate human epilepsies is important for pharmacological studies of anticonvulsants, dissection of molecular and biochemical pathogenesis of epilepsy, and discovery of epilepsy susceptibility genes. We discovered that the PL/J inbred mouse strain is susceptible to handling- and rhythmic tossing–induced seizure. The tonic–clonic and generalized seizures observed after induction were accompanied by abnormal EEGs, similar to seizures observed in EL and SWXL-4 mice. PL/J mice also had an extremely low threshold to electroconvulsive seizures compared to other strains and showed variable sensitivity to pentylenetetrazole-induced seizures. Gross neurostructural abnormalities were not found in PL/J mice. Crosses with the seizure-resistant C57BL/6 J strain revealed semidominant inheritance of the rhythmic tossing seizure trait with low penetrance. F2 progeny indicated that the genetic inheritance of seizure susceptibility in PL/J is non-Mendelian. We crossed DBA/2 J mice, which are resistant to rhythmic tossing seizure but susceptible to audiogenic seizures, to PL/J. We found that seizure penetrance in (DBA/2 J × PL/J)F1 mice was similar to the penetrance in (C57BL/6 J × PL/J)F1 mice but the severity and frequency of seizure were higher in (DBA/2 J × PL/J)F1 mice. The PL/J strain serves as an interesting new model for studying the genetics, neurobiology, and pharmacology of epilepsy.  相似文献   

6.
Abstract

Animal models are widely used in atherosclerosis research. The most useful, economic and valid is mouse genetic model of this pathology. Purinergic signaling is an important mechanism regulating processes involved in the vascular inflammation and atherosclerosis. The aim of this study was to measure vascular activities of nucleotide and adenosine-degrading ecto-enzymes in different strains of mice and to compare them to atherosclerotic susceptibility.

The vascular extracellular nucleotide catabolism pathway was analyzed in 6-month-old male genetically unmodified mouse strains: FVB/NJ, DBA/2J, BALB/c, C57Bl/6J and mouse knock-outs on C57Bl/6J background for LDLR (LDLR-/-) and for ApoE and LDLR (ApoE-/-LDLR-/-). LDLR-/- mice were a model of moderate hypercholesterolemia, while ApoE-/-LDLR-/- mice, a model of severe hypercholesterolemia with advanced atherosclerosis.

FVB/NJ, DBA/2J and BALB/c mice showed high rates of vascular extracellular AMP hydrolysis and low activity of adenosine deamination. In turn, all mice with the C57Bl/6J background expressed diminished activity of vascular AMP hydrolysis. Mice with genetically-induced hyperlipidemia and atherosclerosis on the C57Bl/6J background revealed increased ecto-adenosine deaminase activity.

Mouse strains that were resistant to atherosclerosis (FVB/NJ, DBA/2J, BALB/c) exhibited a protective extracellular vascular ecto-enzyme pattern directed toward the production of anti-inflammatory and anti-atherosclerotic adenosine. In turn, mice with genetically induced hypercholesterolemia and atherosclerosis expressed disturbed activities of ecto-5’nucleotidase and ecto-adenosine deaminase related to decreased production and increased degradation of extracellular adenosine.  相似文献   

7.
C57BL/6J (B6) inbred mice are well known to drink large amounts of alcohol (ethanol) voluntarily and to have only modest ethanol-induced withdrawal under fixed dose conditions. In contrast, DBA/2J (D2) mice are ``teetotallers' and exhibit severe ethanol withdrawal. Speculation that an inverse genetic relationship existed between these two traits was substantiated by meta-analysis of existing data collected in multiple genetic models, including large panels of standard and recombinant inbred strains, their crosses, and selectively bred mouse lines. Despite methodological differences among laboratories in measurement of both preference drinking and withdrawal, a nearly universal finding was that genotypes consuming large amounts of 10% ethanol (calculated as g/kg/day) during two-bottle choice preference drinking were genetically predisposed to low withdrawal scores in independent studies after either acute or chronic ethanol treatment. Conversely, low-drinking genotypes had higher withdrawal severity scores. The genetic relationship appears to be strongest in populations derived from B6 and D2, where data from more genotypes (BXD RIs, B6D2F2s, BXD RI F1s, and B6D2F2-derived selectively bred lines) were available for analysis. Gene mapping studies in these populations identified four chromosome regions [on Chromosomes (Chrs) 1, 2, 4, and 15] where genes might potentially influence both traits. Among genotypes with greater genetic diversity (for example, a panel of standard inbred strains or selectively bred lines), the relationship was less pronounced. Thus, reduced susceptibility to the development of high alcohol use may be supported by increased genetic susceptibility to ethanol withdrawal symptoms. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   

8.
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.  相似文献   

9.
Cranial base growth plates are important centers of longitudinal growth in the skull and are responsible for the proper anterior placement of the face and the stimulation of normal cranial vault development. We report that the presphenoidal synchondrosis (PSS), a midline growth plate of the cranial base, closes in the DBA/2J mouse strain but not in other common inbred strains. We investigated the genetics of PSS closure in DBA/2J mice by evaluating F1, F1 backcross, and/or F1 intercross offspring from matings with C57BL/6J and DBA/1J mice, whose PSS remain open. We observed that PSS closure is genetically determined, but not inherited as a simple Mendelian trait. Employing a genome-wide SNP array, we identified a region on chromosome 11 in the C57BL/6J strain that affected the frequency of PSS closure in F1 backcross and F1 intercross offspring. The equivalent region in the DBA/1J strain did not affect PSS closure in F1 intercross offspring. We conclude that PSS closure in the DBA/2J strain is complex and modified by different loci when outcrossed with C57BL/6J and DBA/1J mice.  相似文献   

10.
The DBA/2J inbred strain of mice is used extensively in hearing research, yet little is known about the genetic basis for its early onset, progressive hearing loss. To map underlying genetic factors we analyzed recombinant inbred strains and linkage backcrosses. Analysis of 213 mice from 31 BXD recombinant inbred strains detected linkage of auditory brain-stem response thresholds with a locus on distal chromosome 11, which we designate ahl8. Analysis of 225 N2 mice from a backcross of (C57BL/6JxDBA/2J) F1 hybrids to DBA/2J mice confirmed this linkage (LOD>50) and refined the ahl8 candidate gene interval. Analysis of 214 mice from a backcross of (B6.CAST-Cdh23 Ahl+ xDBA/2J) F1 hybrids to DBA/2J mice demonstrated a genetic interaction of Cdh23 with ahl8. We conclude that ahl8 is a major contributor to the hearing loss of DBA/2J mice and that its effects are dependent on the predisposing Cdh23 ahl genotype of this strain.  相似文献   

11.
It is clear that the development of an autoimmune disease usually depends on both a genetic predisposition and an environmental trigger. In this study, we demonstrate that BALB/c mice develop a lupus-like serology following immunization with a peptide mimetope of DNA, while DBA/2 mice do not. We further demonstrate that the critical difference resides within the B cell compartment and that the naive B cell repertoire of DBA/2 mice has fewer B cells specific for the DNA mimetope. Differences in the strength of B cell receptor signaling exist between these two strains and may be responsible for the difference in disease susceptibility. BALB/c mice possess more autoreactive cells in the native repertoire; they display a weaker response to Ag and exhibit less Ag-induced apoptosis of B cells. DBA/2 mice, in contrast, display a stronger B cell receptor signal and more stringent central tolerance. This correlates with resistance to lupus induction. Thus, the degree to which autoreactive B cells have been eliminated from the naive B cell repertoire is genetically regulated and may determine whether a nonspontaneously autoimmune host will develop autoimmunity following exposure to Ag.  相似文献   

12.
F R Ampy  A O Williams 《Life sciences》1986,39(10):931-936
Crosses among BALB/c, C57BL and DBA mice were performed to investigate the genetic mechanisms involved in metabolism of DMN by renal and hepatic tissues. Liver S-9 fractions from parental strain DBA had the greatest potential to activate DMN and liver fractions from parental strain BALB/c had the lowest. No age or sex-related differences were observed within strain. Crossing of either C57BL or DBA to BALB/c mice resulted in F1 hybrids with liver microsomal enzymes that gave results similar to the BALB/c parental strain. There were no sex or age differences within crossbred strains in the potential of liver to activate DMN. In contrast male DBA and C57BL parental mice renal S-9 fractions did not differ significantly from each other but did differ significantly from male BALB/c renal fractions and from female and immature animals of all strains. Crossing of either DBA or C57BL mice with BALB/c mice resulted in male F1 hybrids whose renal S-9 fractions did not differ significantly from males of the parental BALB/c strain. In all instances, male renal S-9 fractions had a significantly greater potential to activate DMN than female or immature animals. F1 DBA X C57BL hybrids had renal S-9 fractions that did not differ significantly from the parental strains. These data suggest that the gene(s) for low DMN metabolism of BALB/c mice are apparently dominant over the genes from both DBA and C57BL. The exact genetic or physiological mechanism needs further elucidation.  相似文献   

13.
DBA/2 (D2) mice are susceptible and C57BL/6 (B6) mice are resistant to lethal mousepox. A congenic resistant strain, D2.B6-Rmp-4r (D2.R4), was developed by serially backcrossing male mice that survived ectromelia virus infection with D2 mice, beginning with (B6 x D2)F1 mice. Male D2.R4 mice were at least 300-fold more resistant to lethal mousepox than male D2 mice. Female D2.R4 mice were 100-fold more resistant than male D2.R4 mice and 500-fold more resistant than female D2 mice. Neonatal gonadectomy prevented development of resistance in D2.R4 mice of both sexes. Differences in resistance between strains and between sexes correlated with restriction of virus replication in spleen and liver, but gender differences were less evident in liver than in spleen. High-resolution interval mapping of the 19 autosomes of D2.R4 mice using dispersed informative microsatellites as marker loci revealed a segment of distal chromosome 1 to be of B6 origin. Haplotypes for a marker locus, D1Mit57, from the differential segment were determined in (D2.R4 x D2)F1 x D2 backcross mice, which were then infected with ectromelia virus. Significantly more heterozygotes than homozygotes survived ectromelia virus infection in both sexes. Whereas nearly all surviving males were heterozygotes, 44% of surviving females were homozygotes. These results indicate that resistance in D2.R4 mice is determined by a gonad-dependent gene on distal chromosome 1, provisionally named Rmp-4, and by an ovary-dependent factor that is not genetically linked to Rmp-4.  相似文献   

14.
Coxsackievirus B3 (CVB3) infection is the most common cause of viral myocarditis. The pathogenesis of viral myocarditis is strongly controlled by host genetic factors. Although certain indispensable components of immunity have been identified, the genes and pathways underlying natural variation between individuals remain unclear. Previously, we isolated the viral myocarditis susceptibility 1 (Vms1) locus on chromosome 3, which influences pathogenesis. We hypothesized that confirmation and further study of Vms1 controlling CVB3-mediated pathology, combined with pathway analysis and consomic mapping approaches, would elucidate both pathological and protective mechanisms accounting for natural variation in response to CVB3 infection. Vms1 was originally mapped to chromosome 3 using a segregating cross between susceptible A/J and resistant B10.A mice. To validate Vms1, C57BL/6J-Chr 3(A)/NaJ (a chromosome substitution strain that carries a diploid A/J chromosome 3) were used to replicate susceptibility compared with resistant C57BL/6J (B6). A second segregating F2 cross was generated between these, confirming both the localization and effects of Vms1. Microarray analysis of the four strains (A/J, B10.A, C57BL/6J, and C57BL/6J-Chr 3(A)/NaJ) illuminated a core program of response to CVB3 in all strains that is comprised mainly of IFN-stimulated genes. Microarray analysis also revealed strain-specific differential expression programs and genes that may be prognostic or diagnostic of susceptibility to CVB3 infection. A combination of analyses revealed very strong evidence for the existence and location of Vms1. Differentially expressed pathways were identified by microarray, and candidate gene analysis revealed Fpgt, H28, and Tnni3k as likely candidates for Vms1.  相似文献   

15.
After repeated exposures, many individuals develop tolerance to the adverse health effects of inhaled pollutants. Pulmonary tolerance can be characterized as the ability of the lung to withstand the adverse actions of a toxic compound after repeated exposures. To determine whether genetic background is important to the development of pulmonary tolerance to inhaled pollutants, 11 inbred strains of mice were exposed once (1x) or for 5 consecutive days (5x) to 1.0 mg/m(3) of zinc oxide (ZnO). Development of pulmonary tolerance was assessed by measuring polymorphonuclear leukocyte and protein levels in bronchoalveolar lavage fluid and comparing the responses of the 1x and 5x groups. Significant interstrain variation in polymorphonuclear leukocyte and protein responses was observed between the groups with 1x and 5x exposures, which indicates that genetic background has an important role in the development of pulmonary tolerance. The BALB/cByJ strain and the DBA/2J strain were the most tolerant and nontolerant, respectively. The CByD2F1/J offspring were uniformly nontolerant. The development of tolerance was also investigated in BALB/cByJ and DBA/2J mice after 1x and 5x exposure to ozone and aerosolized endotoxin. Discordance in the phenotypic pattern of pulmonary tolerance among strains after exposure to ZnO, ozone, and endotoxin suggested that different mechanisms may be responsible for the development of pulmonary tolerance to these agents.  相似文献   

16.
The susceptibility to collagen-induced arthritis in the highly susceptible DBA/1 mouse has earlier been shown to be partly controlled by the MHC class II gene Aq. To identify susceptibility loci outside of MHC, we have made crosses between DBA/1 and the less susceptible B10.Q strain, both expressing the MHC class II gene Aq. Analysis of 224 F2 intercross mice with 170 microsatellite markers in a genome-wide scan suggested 4 quantitative trait loci controlling arthritis susceptibility located on chromosomes 6, 7, 8, and 10. The locus on chromosome 6 (Cia6), which was associated with arthritis onset, yielded a logarithm of odds score of 4.7 in the F2 intercross experiment and was reproduced in serial backcross experiments. Surprisingly, the DBA/1 allele had a recessive effect leading to a delay in arthritis onset. The suggestive loci on chromosomes 7 and 10 were associated with arthritis severity rather than onset, and another suggestive locus on chromosome 8 was most closely associated with arthritis incidence. The loci on chromosomes 7, 8, and 10 all appeared to contain disease-promoting alleles derived from the DBA/1 strain. Interestingly, most of the identified loci were situated in chromosomal regions that are homologous to regions in the rat genome containing susceptibility genes for arthritis; the mouse Cia6 locus is homologous with the rat Cia3, Pia5, Pia2, and Aia3; the locus on chromosome 7 (Cia7) is homologous with the rat Cia2; and the locus on chromosome 10 (Cia8) is homologous with the rat Cia4.  相似文献   

17.
We recently demonstrated that cardiac myosin is capable of inducing autoimmune myocarditis in genetically predisposed mice. This disease parallels coxsackievirus B3-induced autoimmune myocarditis in many respects and is associated with high-titer autoantibodies specific for cardiac myosin. The following lines of evidence suggest that these autoantibodies are not involved in the induction of autoimmune myocarditis: 1) immunoperoxidase staining of heart sections from cardiac myosin-immunized A/J and A.SW mice revealed IgG depositions only along damaged muscle fibres in infiltrated areas, but not in intact tissue; 2) myosin autoantibodies did not bind to the surface of viable cardiac myocytes isolated from mice, but only reacted with myocytes permeabilized with detergent; 3) mice treated with a single high dose of cyclophosphamide, which reduces the humoral immune response, still developed severe myocarditis, despite the fact that their autoantibody titers were reduced to the level of adjuvant-injected controls; and 4) passive transfer of high-titer myosin autoantibodies failed to induce myocarditis, although the titers in the recipients were comparable to those found in mice with cardiac myosin-induced disease. Together, the results suggest that high-titer myosin autoantibodies are secondary rather than primary to the disease.  相似文献   

18.
Non-MHC loci have been shown to play an important role in the development and regulation of graft-vs-host disease (GVHD). In the murine model of GVHD under study, injection of C57BL/6 spleen cells into unirradiated (C57BL/6 x DBA/2)F1 hybrid recipient mice results in an acute form of GVHD characterized by CTL, suppressor cells, and runting. In contrast, injection of DBA/2 spleen cells into the same recipients results in a chronic form of GVHD that is characterized by a lack of CTL and hyperproduction of Ig and autoantibodies. After preliminary studies with the use of congenic mice showed that non-MHC loci were controlling GVHD responses in this model, genetic analysis of GVHD response of BXD recombinant inbred strains and (B10.D2 x DBA/2) X DBA/2 BC mice identified a single locus, Gvh, on chromosome 7 that controls whether acute or chronic GVHD results from injection of parental lymphocytes into unirradiated (C57BL/6 x DBA/2)F1 recipient mice.  相似文献   

19.
Recent studies of heart disease suggest that immunologically mediated processes often accompany cardiac injury and can contribute to pathogenesis. Murine models of myocarditis have provided insight into the mechanisms by which autoimmune responses to cardiac antigens arise and cause tissue pathology. It is now evident that T cells, cytokines and antibodies can all contribute to cardiac injury. Furthermore, murine models have demonstrated that both the propensity to develop autoreactivity following cardiac injury and the vulnerability of the heart to these responses are under genetic control. Continued studies will help to identify susceptibility genes and might aid in the development of strategies to protect individuals at risk from immunologically mediated damage following cardiac injury.  相似文献   

20.
Cardiac myosin induces myocarditis in genetically predisposed mice   总被引:46,自引:0,他引:46  
After infection with coxsackie virus B3 (CB3), H-2 congenic mice on an A- background develop immunologically mediated myocarditis associated with an increased titer of myosin autoantibody, part of which is specific for the cardiac myosin isoform. The present study demonstrates that cardiac myosin itself induces severe myocarditis and high titers of myosin autoantibodies in A/J, A.SW/SnJ, and A.CA/SnJ mice. As in CB3-induced myocarditis, one population of these autoantibodies was specific for cardiac myosin. A.BY/SnJ and B10.A/SgSnJ mice also developed the disease after immunization, but the prevalence and the myosin autoantibody titers were lower. In contrast, C57BL/6J and C57BL/10J mice were resistant to myocarditis induced by cardiac myosin and did not develop increased myosin autoantibodies or cardiac myosin-specific autoantibodies. Immunization with skeletal muscle myosin had no effect compared with controls injected with complete Freund's adjuvant, thereby suggesting that the immunogenic epitopes are unique to the cardiac myosin isoform. Furthermore, we found that susceptibility to myocarditis induced by cardiac myosin is influenced by the major histocompatibility complex and by genes not closely linked to the major histocompatibility complex. Because there are parallels between myocarditis induced by cardiac myosin and that induced by CB3, this new animal model can be used to analyze the pathologic mechanisms in autoimmune heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号