首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified myosin light chain kinases from skeletal muscle are reported to be significantly smaller (Mr = 75,000-90,000) than the kinases purified from smooth muscle (Mr = 130,000-155,000). It has been suggested that the smaller kinases from striated muscle are proteolytic fragments of a larger enzyme which is homologous, if not identical, to myosin light chain kinase from smooth muscle. Therefore, we have used an antiserum to rabbit skeletal muscle myosin light chain kinase and Western blot analysis to compare the subunit molecular weight of the kinase in skeletal muscle extracts of several mammalian species. In rabbit skeletal muscle, the antiserum only recognized a polypeptide of Mr = 87,000, with no indication that this polypeptide was a proteolyzed fragment of a larger protein. The apparent molecular weights observed in different animal species were 75,000 (mouse), 83,000 (guinea pig), 82,000 (rat), 87,000 (rabbit), 100,000 (dog), and 108,000 (steer). The molecular weight of myosin light chain kinase was constant within an animal species, regardless of skeletal muscle fiber type. The antiserum inhibited the catalytic activity of skeletal muscle myosin light chain kinase. Similar antibody dilution curves for inhibition of myosin light chain kinase activity in extracts were observed for all animal species (rabbit, rat, mouse, guinea pig, dog, cat, steer, and chicken) and different fibers (slow twitch oxidative, fast twitch oxidative glycolytic, and fast twitch glycolytic) tested. The antiserum did not inhibit the activity of rabbit smooth muscle myosin light chain kinase. These results suggest that there may be at least two classes of muscle myosin light chain kinase represented in skeletal and smooth muscles, respectively.  相似文献   

2.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

3.
The regulatory light chain is required for folding of smooth muscle myosin   总被引:10,自引:0,他引:10  
Light chain phosphorylation causes the folded monomeric form of myosin to extend and assemble into filaments. This observation established the involvement of the 20-kDa regulatory light chain (LC20) in conformational transitions of smooth muscle myosin. To further assess the role of this subunit in the intramolecular folding of myosin, LC20 was removed from turkey gizzard myosin at elevated temperatures in the presence of EDTA through the use of an antibody affinity column. Metal-shadowed images showed that LC20-deficient myosin had a tendency to aggregate through the neck region. When MgATP was added to filaments formed from this myosin, less than 10% of the myosin was solubilized, indicating that myosin could not fold in the absence of light chain. Readdition of native regulatory light chain restored the myosin to its original solubility properties, thus establishing reversibility. Addition of foreign light chains from skeletal muscle myosin or a chymotryptic-cleaved gizzard light chain produced the same amount of monomeric myosin in high salt that was obtained by recombination with the homologous light chain. However, the ability of the hybrid myosins to assume the folded conformation was impaired, and only a partially folded species was obtained. Single-headed myosin, like rod and light chain-deficient myosin, remained filamentous in the presence of MgATP. These results are consistent with the hypothesis that the regulatory light chain in the neck region of myosin contributes to a binding site for the myosin tail.  相似文献   

4.
Sites phosphorylated in myosin light chain in contracting smooth muscle   总被引:4,自引:0,他引:4  
Purified smooth muscle myosin light chain can be phosphorylated at multiple sites by myosin light chain kinase and protein kinase C. We have determined the sites phosphorylated on myosin light chain in intact bovine tracheal smooth muscle. Stimulation with 10 microM carbachol resulted in 66 +/- 5% monophosphorylated and 11 +/- 2% diphosphorylated myosin light chain after 1 min, and 47 +/- 4% monophosphorylated and 5 +/- 2% diphosphorylated myosin light chain after 30 min. Myosin heavy chain contained 0.06 +/- 0.01 mol of phosphate/mol of protein which did not change with carbachol. At both 1 and 30 min the monophosphorylated myosin light chain contained only phosphoserine whereas the diphosphorylated myosin light chain contained both phosphoserine and phosphothreonine. Two-dimensional peptide mapping of tryptic digests of monophosphorylated and diphosphorylated myosin light chain obtained from carbachol-stimulated tissue was similar to the peptide maps of purified light chain monophosphorylated and diphosphorylated, respectively, by myosin light chain kinase; these maps were distinct from the map obtained with tracheal light chain phosphorylated by protein kinase C. Phosphorylation of tracheal smooth muscle myosin light chain by myosin light chain kinase yields the tryptic phosphopeptide ATSNVFAMFDQSQIQEFK with S the phosphoserine in the monophosphorylated myosin light chain and TS the phosphotreonine and phosphoserine in the diphosphorylated myosin light chain. Thus, stimulation of tracheal smooth muscle with a high concentration of carbachol results in formation of both monophosphorylated and diphosphorylated myosin light chain although the amount of diphosphorylated light chain is substantially less than monophosphorylated light chain. In the intact muscle, myosin light chain is phosphorylated at sites corresponding to myosin light chain kinase phosphorylation.  相似文献   

5.
Substrate specificity of myosin light chain kinases.   总被引:3,自引:0,他引:3  
Skeletal muscle myosin light chain kinase can phosphorylate myosin light chains isolated from skeletal or smooth muscle. In contrast, smooth muscle myosin light chain kinase specifically phosphorylates light chains isolated from smooth muscle. In this study, we have identified residues within the rabbit smooth and skeletal muscle myosin light chain kinases which may interact with the basic residues that are important substrate determinants in the light chains. Mutation of aspartic acid 270 amino-terminal of the catalytic core of the skeletal muscle myosin light chain kinase increased the Km value for both smooth and skeletal muscle light chains. Although deletions of the analogous region of the smooth muscle myosin light chain kinase (residues 663-678) markedly increased the Km value for light chain, mutation of any single acidic residue within this region did not have a similar effect. Mutation of single residues within the catalytic core of the skeletal muscle (E377 and E421) and smooth muscle (E777 and E821) myosin light chain kinases increased Km values for the smooth muscle light chain at least 35- and 100-fold, respectively. It is proposed that these residues may form ionic interactions with the arginine that is 3 residues amino-terminal of the phosphorylatable serine in the smooth muscle light chain.  相似文献   

6.
Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca(2+) sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V(max) and K(M) for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.  相似文献   

7.
The activity of smooth and non-muscle myosin II is regulated by phosphorylation of the regulatory light chain (RLC) at serine 19. The dephosphorylated state of full-length monomeric myosin is characterized by an asymmetric intramolecular head–head interaction that completely inhibits the ATPase activity, accompanied by a hairpin fold of the tail, which prevents filament assembly. Phosphorylation of serine 19 disrupts these head–head interactions by an unknown mechanism. Computational modeling (Tama et al., 2005. J. Mol. Biol. 345, 837–854) suggested that formation of the inhibited state is characterized by both torsional and bending motions about the myosin heavy chain (HC) at a location between the RLC and the essential light chain (ELC). Therefore, altering relative motions between the ELC and the RLC at this locus might disrupt the inhibited state. Based on this hypothesis we have derived an atomic model for the phosphorylated state of the smooth muscle myosin light chain domain (LCD). This model predicts a set of specific interactions between the N-terminal residues of the RLC with both the myosin HC and the ELC. Site directed mutagenesis was used to show that interactions between the phosphorylated N-terminus of the RLC and helix-A of the ELC are required for phosphorylation to activate smooth muscle myosin.  相似文献   

8.
The molecular and biochemical properties of myosin light chain kinases from chicken skeletal and smooth muscle were investigated by recombinant DNA techniques. Deletion of the amino-terminal region of either the smooth or skeletal muscle myosin light chain kinase resulted in a decrease in Vmax with no significant change in Km values for light chain substrates. Skeletal/smooth muscle chimeric kinases were inactive when a 65-residue region amino-terminal of the catalytic core was exchanged between the two forms. Changing alanine 494 to glutamic acid within this region in the chicken skeletal muscle myosin light chain kinase increased the Km values for light chains 10-fold. These results are consistent with the hypothesis that the region amino-terminal of the catalytic core in myosin light chain kinases is involved in light chain recognition. A skeletal muscle kinase which contained the smooth muscle calmodulin binding domain remained regulated by Ca2+/calmodulin. Thus, the calmodulin binding domains of smooth and skeletal muscle myosin light chain kinases share structural elements necessary for regulation.  相似文献   

9.
Monoclonal antibodies against gizzard smooth muscle myosin were generated and characterized. One of these antibodies, designated MM-2, recognized the 17-kDa light chain and modulated the ATPase activities and hydrodynamic properties of smooth muscle myosin. Rotary shadowing electron microscopy showed that MM-2 binds 51 (+/- 25) A from the head-rod junction. The depression of Ca2+- and Mg2+-ATPase activities of myosin and Ca2+-ATPase activity of heavy meromyosin at low KCl concentration were abolished by MM-2. Viscosity measurement indicated that MM-2 inhibits the transition of 6 S myosin to 10 S myosin. While the rate of the production of subfragment-1 by papain proteolysis of 6 S myosin was inhibited by MM-2, the rate of proteolysis of the heavy chain of 10 S myosin was enhanced by MM-2 and reached the same rate as that of 6 S myosin plus MM-2. These results suggest that MM-2 inhibits the formation of 10 S myosin by binding to the 17-kDa light chain which is localized at the head-neck region of the myosin molecule. MM-2 increased the Vmax of actin-activated Mg2+-ATPase activities of both dephosphorylated myosin and dephosphorylated heavy meromyosin about 10- and 20-fold, respectively. MM-2 also activated the actin-activated Mg2+-ATPase activity of phosphorylated myosin at a low MgCl2 concentration and thus abolished the Mg2+-dependence of acto phosphorylated myosin ATPase activity. These results suggest that MM-2 inhibits the formation of 10 S myosin, and this results in the activation of actin-activated Mg2+-ATPase activity even in the absence of phosphorylation.  相似文献   

10.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

11.
Li XD  Saito J  Ikebe R  Mabuchi K  Ikebe M 《Biochemistry》2000,39(9):2254-2260
Recent findings have suggested that the interaction between the two heads is critical for phosphorylation-dependent regulation of smooth muscle myosin. We hypothesized that the interaction between the two regulatory light chains on two heads of myosin dictates the regulation of myosin motor function. To evaluate this notion, we engineered and characterized smooth muscle heavy meromyosin (HMM), which is composed of one entire HMM heavy chain and one motor domain truncated heavy chain containing the S2 rod and regulatory light chain (RLC) binding site, as well as the bound RLC (SMDHMM). SMDHMM was inactive for both actin-translocating activity and actin-activated ATPase activity in the dephosphorylated state, demonstrating that the interaction between the two RLC domains on the two heads and/or a motor domain and a RLC domain in a distinct head is sufficient for the inhibition of smooth muscle myosin motor activity. When phosphorylated, SMDHMM was activated for both actin-translocating activity and actin-activated ATPase activity; however, these activities were lower than those of double-headed HMM, implying partial release of inhibition by phosphorylation in SMDHMM and/or cooperativity between the two heads of smooth muscle myosin. The present results indicate that the RLC domain is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. On the other hand, similar to double-headed HMM, SMDHMM showed both "folded" and "extended" conformations, and the ratio of those conformations is dependent on ionic strength, suggesting that the RLC domain is sufficient to regulate the conformational transition in myosin.  相似文献   

12.
J Morita  R Takashi  M Ikebe 《Biochemistry》1991,30(39):9539-9545
The 20,000-dalton light chain of smooth muscle myosin was exchanged with exogenous light chain in a solution containing 0.5 M NaCl and 10 mM EDTA at 40 degrees C. The light chain was almost completely exchanged within 30 min under the above conditions. The exchange was markedly inhibited either below 37 degrees C or in the presence of Mg2+ concentrations higher than 10 microM. The 20,000-dalton light chain was selectively labeled of a single thiol (Cys-108) with 5-[[2-[(iodoacetyl)amino]ethyl]amino-naphthalene-1-sulfonic acid (1,5-IAEDANS). The labeled light chain was exchanged stoichiometrically into myosin and was used as a probe to investigate the conformation of smooth muscle myosin. The resulting myosin hybrids showed enzymatic properties virtually identical with those of the control, untreated myosin; i.e., actin-activated ATPase activity was dependent on the 20,000-dalton light-chain phosphorylation catalyzed by myosin light chain kinase, and the 10S-6S conformational transition of myosin correlating with the changes in ATPase was also affected either by the light-chain phosphorylation or by the change in the ionic strength. Steady-state fluorescence antisotropy measurements were performed by varying the temperature. The Perrin-Weber plots were constructed in order to obtain information about the average rotational mobility of the probe and to estimate the rotational correlation time for the AEDANS-myosin head. The fluorescence probe on the 20,000-dalton light chain was found to be quite immobile as indicated by its limiting anisotropy (A0 = 0.33).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Vascular smooth muscle cell contraction and relaxation are directly related to the phosphorylation state of the regulatory myosin light chain. Myosin light chains are dephosphorylated by myosin phosphatase, leading to vascular smooth muscle relaxation. Myosin phosphatase is localized not only at actin-myosin stress fibers where it dephosphorylates myosin light chains, but also in the cytoplasm and at the cell membrane. The mechanisms by which myosin phosphatase is targeted to these loci are incompletely understood. We recently identified myosin phosphatase-Rho interacting protein as a member of the myosin phosphatase complex that directly binds both the myosin binding subunit of myosin phosphatase and RhoA and is localized to actin-myosin stress fibers. We hypothesized that myosin phosphatase-Rho interacting protein targets myosin phosphatase to the contractile apparatus to dephosphorylate myosin light chains. We used RNA interference to silence the expression of myosin phosphatase-Rho interacting protein in human vascular smooth muscle cells. Myosin phosphatase-Rho interacting protein silencing reduced the localization of the myosin binding subunit to stress fibers. This reduction in stress fiber myosin phosphatase-Rho interacting protein and myosin binding subunit increased basal and lysophosphatidic acid-stimulated myosin light chain phosphorylation. Neither cellular myosin phosphatase, myosin light chain kinase, nor RhoA activities were changed by myosin phosphatase-Rho interacting protein silencing. Furthermore, myosin phosphatase-Rho interacting protein silencing resulted in marked phenotypic changes in vascular smooth muscle cells, including increased numbers of stress fibers, increased cell area, and reduced stress fiber inhibition in response to a Rho-kinase inhibitor. These data support the importance of myosin phosphatase-Rho interacting protein-dependent targeting of myosin phosphatase to stress fibers for regulating myosin light chain phosphorylation state and morphology in human vascular smooth muscle cells.  相似文献   

14.
To examine the functional role of the essential light chain (ELC) in the phosphorylation-dependent regulation of smooth muscle myosin, we replace the native light chain in smooth muscle myosin with bacterially expressed chimeric ELCs in which one or two of the four helix-loop-helix domains of chicken gizzard ELC were substituted by the corresponding domains of scallop (Aquipecten irradians) ELC. All of these myosins, regardless of the ELC mutations or regulatory light chain (RLC) phosphorylation, showed normal subunit constitutions and NH(4)(+)/EDTA-ATPase activities, both of which were similar to those of native myosin. None of the ELC mutations changed the actin-activated ATPase activity of myosin in the absence of RLC phosphorylation. However, in the presence of RLC phosphorylation, the substitution of domain 1 or 2 in the ELC significantly decreased the actin-activated ATPase activity, whereas the substitution of both of these domains did not change the activity. In contrast to myosin, the domain 2 substitution in the ELC did not affect the actin-activated ATPase activity of single-headed myosin subfragment 1. These results suggest an interhead interaction between domains 1 and 2 of ELCs which is required to attain the full actin-activated ATPase activity of smooth muscle myosin in the presence of RLC phosphorylation.  相似文献   

15.
Electron microscopy and negative staining techniques have been used to show that the proteolytic removal of 13 amino acids from the N-terminus of essential light chain 1 and 19 amino acids from the N-terminus of the regulatory light chain of rabbit skeletal and cardiac muscle myosins destroys Ca(2+)-induced reversible movement of subfragment-2 (S2) with heads (S1) away from the backbone of synthetic myosin filaments observed for control assemblies of the myosin under near physiological conditions. This is the direct demonstration of the contribution of the S2 movement to the Ca(2+)-sensitive structural behavior of rabbit cardiac and skeletal myosin filaments and of the necessity of intact light chains for this movement. In muscle, such a mobility might play an important role in proper functioning of the myosin filaments. The impairment of the Ca(2+)-dependent structural behavior of S2 with S1 on the surface of the synthetic myosin filaments observed by us may be of direct relevance to some cardiomyopathies, which are accompanied by proteolytic breakdown or dissociation of myosin light chains.  相似文献   

16.
A protease-activated protein kinase that phosphorylates the P light chain of myosin in the absence of Ca2+ and calmodulin has been isolated from rabbit skeletal muscle. The enzyme has properties similar to protease-activated kinase I from rabbit reticulocytes [S. M. Tahara and J. A. Traugh (1981) J. Biol. Chem. 256, 11588-11564], which has been shown to phosphorylate the P light chain of myosin [P. T. Tuazon, J. T. Stull, and J. A. Traugh (1982) Biochem. Biophys. Res. Commun. 108, 910-917]. The protease-activated kinase from skeletal muscle has been partially purified by chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The enzyme phosphorylates histone as well as the P light chain of myosin following activation by proteolysis. Stoichiometric phosphorylation of myosin light chain was observed with the protease-activated kinase and myosin light chain kinase. The sites phosphorylated by the protease-activated kinase and myosin light chain kinase were examined by two-dimensional peptide mapping following chymotryptic digestion. The phosphopeptides observed with the protease-activated kinase were different from those obtained with the Ca2+-dependent myosin light chain kinase, indicating that the two enzymes phosphorylated different sites on the P light chain of skeletal muscle myosin. When actomyosin from skeletal muscle was examined as substrate, the P light chain was phosphorylated following activation of the protease-activated kinase by limited proteolysis.  相似文献   

17.
Smooth muscle myosin light chain kinase contains a 64 residue sequence that binds calmodulin in a Ca2+-dependent manner (Guerriero, V., Jr., Russo, M. A., and Means, A. R. (1987) Biochemistry, in press). Within this region is a sequence with homology to the corresponding sequence reported for the calmodulin binding region of skeletal muscle myosin light chain kinase (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, L., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191). Inspection of these sequences reveals that they both share a similar number and spatial arrangement of basic residues with those present in the myosin light chain substrate. We have synthesized a 22-residue peptide corresponding to residues 480-501 (determined from the cDNA) of the smooth muscle myosin light chain kinase. This peptide, Ala-Lys-Lys-Leu-Ser-Lys-Asp-Arg-Met-Lys-Lys-Tyr-Met-Ala-Arg-Arg-Lys-Trp- Gln-Lys-Thr-Gly, inhibited calmodulin-dependent activation of the smooth muscle myosin light chain kinase with an IC50 of 46 nM. At saturating concentrations of calmodulin, the 22-residue peptide inhibited myosin light chain and synthetic peptide substrate phosphorylation competitively with IC50 values of 2.7 and 0.9 microM, respectively. An 11-residue synthetic peptide analog, corresponding to part of the calmodulin-binding sequence in skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys-Lys-Asn-Phe-Ile-Ala-Val, also competitively inhibited synthetic peptide substrate phosphorylation with a Ki of 1 microM. The competitive inhibitory activity of the calmodulin binding regions is similar to the apparent Km of 2.7 microM for phosphorylation of the 23-residue peptide analog of the smooth muscle myosin light chain and raises the possibility that the calmodulin binding region of the myosin light chain kinase may act as a pseudosubstrate inhibitor of the enzyme.  相似文献   

18.
In this study, myosin types in human skeletal muscle fibers were investigated with electrophoretic techniques. Single fibers were dissected out of lyophilized surgical biopsies and typed by staining for myofibrillar ATPase after preincubation in acid or alkaline buffers. After 14C-labelling of the fiber proteins in vitro by reductive methylation, the myosin light chain pattern was analysed on two-dimensional gels and the myosin heavy chains were investigated by one-dimensional peptide mapping. Surprisingly, human type I fibers, which contained only the slow heavy chain, were found to contain variable amounts of fast myosin light chains in addition to the two slow light chains LC1s and LC2s. The majority of the type I fibers in normal human muscle showed the pattern LC1s, LC2s and LC1f. Further evidence for the existence in human muscle of a hybrid myosin composed of a slow heavy chain with fast and slow light chains comes from the analysis of purified human myosin in the native state by pyrophosphate gel electrophoresis. With this method, a single band corresponding to slow myosin was obtained; this slow myosin had the light chain composition LC1s, LC2s and LC1f. Type IIA and IIB fibers, on the other hand, revealed identical light chain patterns consisting of only the fast light chains LC1f, LC2f and LC3f but were found to have different myosin havy chains. On the basis of the results presented, we suggest that the histochemical ATPase normally used for fibre typing is determined by the myosin heavy chain type (and not by the light chains). Thus, in normal human muscle a number of 'hybrid' myosins were found to occur, namely two extreme forms of fast myosins which have the same light chains but different heavy chains (IIA and IIB) and a continuum of slow forms consisting of the same heavy chain and slow light chains with a variable fast light chain composition. This is consistent with the different physiological roles these fibers are thought to have in muscle contraction.  相似文献   

19.
Competition experiments using 9-anthroylcholine, a fluorescent dye that undergoes calmodulin-dependent binding by smooth muscle myosin light chain kinase [Malencik, D. A., Anderson, S. R., Bohnert, J. L., & Shalitin, Y. S. (1982) Biochemistry 21, 4031], demonstrate a strongly stabilizing interaction between the adenosine 5'-triphosphate and myosin light chain binding sites operating within the enzyme-calmodulin complex but probably not in the free enzyme. The interactions in the latter case may be even slightly destabilizing. The fluorescence enhancement in solutions containing 5.0 microM each of the enzyme and calmodulin is directly proportional to the maximum possible concentration of bound calcium on the basis of four calcium binding sites. Evidently, all four calcium binding sites of calmodulin contribute about equally to the enhanced binding of 9-anthroylcholine by the enzyme. Fluorescence titrations on solutions containing 1.0 microM enzyme plus calmodulin yield a Hill coefficient of 1.2 and K = 0.35 +/- 0.08 microM calcium. Three proteolytic fragments of smooth muscle myosin light chain kinase, apparent products of endogenous proteolysis, were isolated and characterized. All three possess calmodulin-dependent catalytic activity. Their interactions with 9-anthroylcholine, in both the presence and absence of calmodulin, are similar to those of the native enzyme. However, the stabilities of their complexes with calmodulin vary. The corresponding dissociation constants range from 2.8 nM for the native enzyme and 8.5 nM for the 96K fragment to approximately 15 nM for the 68K and 90K fragments [0.20 N KCl, 50 mM 3-(N-morpholino)propanesulfonic acid, and 1 mM CaCl2, pH 7.3, 25 degrees C]. A coupled fluorometric assay, modified from a spectrophotometric assay for adenosine cyclic 3',5'-phosphate dependent protein kinase [Cook, P. F., Neville, M. E., Vrana, K. E., Hartl, F. T., & Roskoski, R. (1982) Biochemistry 21, 5794], has provided the first continuous recordings of myosin light chain kinase phosphotransferase activity. The results show that smooth muscle myosin light chain kinase is a responsive enzyme, whose activity adjusts rapidly to changes in solution conditions.  相似文献   

20.
Localisation of light chain and actin binding sites on myosin   总被引:6,自引:0,他引:6  
A gel overlay technique has been used to identify a region of the myosin S-1 heavy chain that binds myosin light chains (regulatory and essential) and actin. The 125I-labelled myosin light chains and actin bound to intact vertebrate skeletal or smooth muscle myosin, S-1 prepared from these myosins and the C-terminal tryptic fragments from them (i.e. the 20-kDa or 24-kDa fragments of skeletal muscle myosin chymotryptic or Mg2+/papain S-1 respectively). MgATP abolished actin binding to myosin and to S-1 but had no effect on binding to the C-terminal tryptic fragments of S-1. The light chains and actin appeared to bind to specific and distinct regions on the S-1 heavy chain, as there was no marked competition in gel overlay experiments in the presence of 50-100 molar excess of unlabelled competing protein. The skeletal muscle C-terminal 24-kDa fragment was isolated from a tryptic digest of Mg2+/papain S-1 by CM-cellulose chromatography, in the presence of 8 M urea. This fragment was characterised by retention of the specific label (1,5-I-AEDANS) on the SH1 thiol residue, by its amino acid composition, and by N-terminal and C-terminal sequence analyses. Electron microscopical examination of this S-1 C-terminal fragment revealed that: it had a strong tendency to form aggregates with itself, appearing as small 'segment-like' structures that formed larger aggregates, and it bound actin, apparently bundling and severing actin filaments. Further digestion of this 24-kDa fragment with Staphylococcus aureus V-8 protease produced a 10-12-kDa peptide, which retained the ability to bind light chains and actin in gel overlay experiments. This 10-12-kDa peptide was derived from the region between the SH1 thiol residue and the C-terminus of S-1. It was further shown that the C-terminal portion, but not the N-terminal portion, of the DTNB regulatory light chain bound this heavy chain region. Although at present nothing can be said about the three-dimensional arrangement of the binding sites for the two kinds of light chain (regulatory and essential) and actin in S-1, it appears that these sites are all located within a length of the S-1 heavy chain of about 100 amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号