首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct electrochemistry of microperoxidase (the heme-undecapeptide from cytochrome c) has been followed at a bare and a gold plated RVC thin-layer electrode, using the spectropotentiostatic method or voltabsorptometry. Both techniques yield 'clean' and undistorted signals; their analysis easily provides quantitative information for the electrochemical parameters of microperoxidase and shows that spectroelectrochemistry is a powerful method to study the redox behavior of metalloproteins or their active site fragments.  相似文献   

2.
A sensitive and quick assay for redox proteins based on electrochemical titrations in a thin-layer electrochemical cell is described. Using a combination of modified-electrode and "mediator-enhanced" electrochemistry, equilibration of the cell volume (4 microliters) with the applied potential allows series of spectra as a function of the potential to be recorded rapidly. A complete redox titration between +500 and -600 mV (vs Ag/AgCl/3 M KCl) in 30-mV intervals takes approximately 2 h. The detection limit of the assay, evaluated for cytochrome c at the alpha-band absorption, is quoted to approximately 100 pmol. The use of this redox assay for the detection of redox-active contaminants in biochemical preparations, for the determination of midpoint potentials of redox enzymes, and for the characterization of complex membrane-bound or soluble redox systems is described.  相似文献   

3.
A novel electrochemical reflection cell combining electrochemical techniques and spectroscopy which uses a solid gold working electrode as an optical mirror is described. This cell can be used at path lengths as low as a few micrometers and thus is suitable for ultraviolet/visible (UV/Vis) and infrared spectroscopy even for aqueous solutions and suspensions. The cell was designed for small sample volumes of only a few microliters, thus reducing the effort for sample preparation. Due to the short path length of some micrometers, the entire volume is within the Nernst diffusion layer, hence resulting in fast equilibration. Evaluation of the technique is described with direct electrochemistry of horse heart cytochrome c at the gold electrode modified with 4,4'-dithiodipyridine. Cyclic voltammograms indicate rapid and reversible electrochemistry with the correct midpoint potential (52 mV vs Ag/AgCl/3 M KCl). Chronoamperometry and coulometry confirm rapid and complete oxidation and reduction; the cell volume can be entirely fully reduced within less than 10-20 s. Spectroscopy in the UV/Vis region, with potentials at the working electrode stepped between -390 and 390 mV, show perfect titration of the cytochrome c heme bands. A Nernst fit of the alpha band absorption, with redox potential Em and number of electrons n left as parameters, yields a midpoint potential of 49 mV and n=0.9. The potential of this cell in the investigation of biological electron transfer reactions and in the study of bioenergetic systems is discussed.  相似文献   

4.
Summary The electrochemical behaviour of Fe(III)-protoporphyrin IX entrapped into a cellulose triacetate membrane has been investigated by cyclic voltammetry. The physical entrapment into a solid matrix does not modify the redox properties of the entrapped berries, which also act as efficient promoters in the electrochemistry of cytochromec. Such a system represents a promising example of a simple solid-state promoter, and stimulates further investigations in order to obtain more complex systems that may be of significance for basic and applied bioelectrochemistry.  相似文献   

5.
S Bagby  P D Barker  L H Guo  H A Hill 《Biochemistry》1990,29(13):3213-3219
The direct electrochemistry of the cytochrome c/cytochrome b5 and cytochrome c/plastocyanin complexes has been investigated at edge-plane graphite and modified gold electrode surfaces, which are selective for one of the two components of the complex. Electrochemical response of one protein at an otherwise electrostatically unfavorable electrode surface was achieved in the presence of the other protein, and the calculated heterogeneous electron-transfer rate constant and diffusion coefficient were found to be in good agreement with the values determined previously from the electrochemistry of the individual proteins [Armstrong, F. A., Hill, H. A. O., & Walton, N. J. (1988) Acc. Chem. Res. 21, 407 and references therein]. A dynamic model of the protein-protein-electrode ternary complex is proposed to explain the promotion effect, and this model is supported by a study comparing the electrochemical responses of covalent and electrostatic cytochrome c/plastocyanin complexes. It is also suggested that the behavior of protein-protein complexes at electrode surfaces could be related to that of the complexes associated with biological membranes.  相似文献   

6.
The structural and redox properties of a heme-containing fragment (1-56 residues) of cytochrome c have been investigated by spectroscopic (circular dichroism, electronic absorption, and EPR) and voltammetric techniques. The results indicate that the N-fragment lacks ordered secondary structure and has two histidines axially bound to the heme-iron (the native His18 and a misligated His26 or His33). Despite the absence of ordered secondary structure, the peptide chain shields the heme group from solvent, as shown by (i) the pK(a) of protonation of the nonnative histidine ligand (5.18 +/- 0.05), lower than that of the bis-histidine guanidine-unfolded cytochrome c (5.58 +/- 0.05), and (ii) the redox potential, E(o) = 0 +/- 5 mV versus NHE, close to that of bis-histidine cytochrome c mutants but less negative than that of bis-histidine complexes of microperoxidase with short peptides. The electroactive N-fragment may be taken as a "minichrome c" model, with interesting potential for application to biosensor technology; further, the system provides useful information for a deeper understanding of cytochrome c folding and structural/functional organization.  相似文献   

7.
Hauser K  Mao J  Gunner MR 《Biopolymers》2004,74(1-2):51-54
Cytochromes belong to a diverse family of heme-containing redox proteins that function as intermediaries in electron transfer chains. They can be soluble, extrinsic, or intrinsic membrane proteins, and are found in different structural motifs (globin, 4-helix bundles, alpha beta roll, beta sandwich). Measured electrochemical midpoint potentials vary over a wide range even though the basic redox reaction at the heme is the same for all cytochromes. The perturbation of the heme electrochemistry is induced by the protein structure. Also, the pH dependence varies since it depends on the strength of interaction between the heme and surrounding residues as well as the ionization states of these groups. Multiconformation continuum electrostatics (MCCE) has been used to investigate the pH dependence of heme electrochemistry in cytochromes with different folds. Often propionates are the primary contributors for pH dependence especially if they are partially protonated in the reduced heme as it is shown for globin cytochrome c551 P. aeruginosa and cytochrome b5 R. norvegicus (alpha beta roll). However, if the propionates are already fully ionized at a certain pH they do not contribute to the pH dependence even if they have big interaction with the heme. At pH 7 there is no propionate contribution for cytochrome f C. reinhardtii (beta sandwich) and the 4-helix bundle c' R. palustris. Other residues can also change their ionization significantly during heme oxidation and therefore be involved in proton release and pH dependence. These residues have been identified for different cytochrome types.  相似文献   

8.
Using an optically transparant thin layer electrode, it has been possible to measure the pH changes associated with the electrochemical turnover of horse heart cytochrome c in the presence of rat liver mitochondria and oxygen. Direct electrochemistry of cytochrome c at a gold electrode modified with bis(4-pyridyl)bisulfide allowed electron flux (current) to be measured simultaneously with the differential change in absorbance associated with phenol red, a pH-sensitive dye. Although the alkalinization due to the reduction of oxygen to water was readily observed, any initial acidification associated with proton pumping was not detected. It is suggested that at the high ratios of oxidized-to-reduced cytochrome c present during the steady state attained, proton pumping may be absent or more localized.  相似文献   

9.
Two distinct class I (monoheme) c-type cytochromes from the hyperthermophilic bacterium Aquifex aeolicus were studied by biochemical and biophysical methods (i.e., optical and EPR spectroscopy, electrochemistry). The sequences of these two heme proteins (encoded by the cycB1 and cycB2 genes) are close to identical (85% identity in the common part of the protein) apart from the presence of an N-terminal stretch of 62 amino acid residues present only in the cycB1 gene. A soluble cytochrome was purified and identified by N-terminal sequencing as the cycB2 gene product. It showed an alpha-peak at 555 nm, an E(m) value of +220 mV, and electron paramagnetic resonance parameters of gz = 2.89, gy = 2.287, and gx = 1.52. A firmly membrane-bound cytochrome characterized by nearly identical properties was detected and attributed to the cycB1 gene product. The very high degree of homology of its N-terminal part to cytochrome c553 from Heliobacterium gestii strongly suggests it to be anchored to the membrane via N-terminally attached lipid molecules. The two heme proteins were named cytochrome c555s (soluble) and cytochrome c555m (membranous). Electron paramagnetic resonance on partially ordered membrane multilayers suggests that the solvent-exposed heme domain of cytochrome c555m is flexible with respect to the membrane plane. Possible functional roles for both cytochromes are discussed.  相似文献   

10.
In view of the assignment of the four redox potentials values to the four heme groups in the crystallographic structure of Desulfovibrio desulfuricans Norway cytochrome c3, a biochemical approach is reported. A singly modified cytochrome c3 on arginine 73 has been prepared. The study of the redox properties of the modified cytochrome by electrochemistry together with the graphic modelisation of the molecule allow to assign the highest redox potential (-165 mV) to the heme 4 in the three dimensional structure.  相似文献   

11.
The redox properties of a prokaryotic, Vitreoscilla sp. hemoglobin (VHb) in fuzzy organic films are studied with electrochemistry. This VHb exhibits irreversible electrochemical response at bare pyrolytic graphite (PG) electrode surfaces. However, upon being entrapped in organic films, the heterogeneous electron transfer rate of VHb will be sufficiently high to produce a quasi-reversible electrochemical response. The observation of electrocatalysis (reduction of O2) by hemes suggests that the protein can retain its biological activity under these conditions.  相似文献   

12.
A new purification protocol for cytochrome c550 (cyt c550) from His-tagged SYnechocYstis PCC 6803 photosystem II (PSII) was developed which allows the protein to be isolated in high yield and purity. Electron paramagnetic resonance spectroscopy of cyt c550, both free in solution and in intact PSII preparations, yields identical spectra with g values at 1.50, 2.23, and 2.87, which are characteristic for a ferric low-spin bis-histidine coordinated heme. The resonance Raman spectrum of the isolated protein exhibits features characteristic of bis-histidine axial ligation of the iron and a slight ruffling of the heme macrocycle. Together, these results indicate that the heme structure is not very different from most c-type cytochromes, and thus the structure of the heme does not account for its unusually low reduction potential. A direct electrochemical measurement of the reduction potential was performed using square wave voltammetry on a pyrolytic graphite edge electrode, yielding E1.2=-108 mV (vs. NHE) with a peak separation of 5 mV. This value is 150 mV more positive than that previously measured by redox titrations. Because the behavior of the protein in the electrochemistry experiments is indicative of adsorption to the electrode surface, we surmise that binding of the protein to the electrode excludes solvent water from the heme-binding site. We conclude that the degree of solvent exposure makes a significant contribution to the heme reduction potential. Similarly, the binding of cyt c550 to PSII may also reduce the solvent exposure of the heme, and so the direct electrochemical value of the reduction potential may be relevant to the protein in its native state.  相似文献   

13.
系统地研究了细胞色素c在多种氨基酸和多肽修饰电极上的电化学反应。并对影响加速细胞色素c电化学反应的因素进行了讨论。  相似文献   

14.
Direct electrochemistry of site-specific mutants of yeast iso-1-cytochrome c (cyt c) and their complexes with bovine cytochrome b5 (cyt b5) has been investigated at edge-plane pyrolytic graphite (EPG) and bis(4-pyridyl)-disulphide-modified gold electrodes. Structure/function relationships have been investigated with the particular aim of clarifying the factors controlling the interactions of proteins at electrode/electrolyte interfaces and the determinants for direct electrochemistry in ternary protein/protein/electrode adducts, e.g. cyt c/cyt b5/EPG. Investigations of the cyt c mutants alone revealed a variety of electrochemical responses: all the mutants show similar voltammetric reversibility at modified gold electrodes, whereas at EPG electrodes the reversibility follows the order: Asn52Ile-Cys102Thr greater than Cys102Thr greater than Asn52Ala-Cys102Thr. Mid-point potentials follow the order: Arg13Ile (+60 +/- 5 mV vs. standard calomel electrode) greater than Cys102Thr (+40 +/- 5 mV) greater than Lys27Gln (+30 +/- 5 mV) approximately Lys72Asp (+30 +/- 5 mV) greater than Asn52Ala-Cys102Thr (+15 +/- 5 mV) greater than Asn52Ile-Cys102Thr (-10 +/- 5 mV). The structural basis for these differences is briefly discussed. When these mutants are bound to cyt b5, the differences in electrochemical response are greatly enhanced in the ternary cyt c/cyt b5/EPG adducts. A minimal analysis of these differences supports a model of multiple overlapping binding and recognition domains on cyt c which may be finely tuned to allow ternary complex formation so that a single-site variation could modify or abolish direct electrochemistry in the ternary adduct.  相似文献   

15.
Chlorobium is an autotrophic, green phototrophic bacterium which uses reduced sulfur compounds to fix carbon dioxide in the light. The pathways for the oxidation of sulfide, sulfur, and thiosulfate have not been characterized with certainty for any species of bacteria. However, soluble cytochrome c-551 and flavocytochrome c (FCSD) have previously been implicated in the oxidation of thiosulfate and sulfide on the basis of enzyme assays in Chlorobium. We have now made a number of observations relating to the oxidation of reduced sulfur compounds. (1) Western analysis shows that soluble cytochrome c-551 in Chlorobium limicola is regulated by thiosulfate, consistent with a role in the utilization of thiosulfate. (2) A membrane-bound flavocytochrome c-sulfide dehydrogenase (which is normally a soluble protein in other species) is constitutive and not regulated by sulfide as expected for an obligately autotrophic species dependent upon sulfide. (3) We have cloned the cytochrome c-551 gene from C. limicola and have found seven other genes, which are also presumably involved in sulfur metabolism and located near that for cytochrome c-551 (SoxA). These include genes for a flavocytochrome c flavoprotein homologue (SoxF2), a nucleotidase homologue (SoxB), four small proteins (including SoxX, SoxY, and SoxZ), and a thiol-disulfide interchange protein homologue (SoxW). (4) We have established that the constitutively expressed FCSD genes (soxEF1) are located elsewhere in the genome. (5) Through a database search, we have found that the eight thiosulfate utilization genes are clustered in the same order in the Chlorobium tepidum genome (www.tigr.org). Similar thiosulfate utilization gene clusters occur in at least six other bacterial species but may additionally include genes for rhodanese and sulfite dehydrogenase.  相似文献   

16.
Folding of globular proteins occurs with rates that range from microseconds to minutes; consequently, it has been necessary to develop new strategies to follow the faster processes that exceed stopped-flow capabilities. Rapid photochemical methods have been employed to study the rate of folding of reduced cytochrome c. In this protein, the iron of the covalently bound heme binds a His and a Met, proximal and distal. Unfolding by guanidine or urea weakens the Fe-Met bond, and the reduced unfolded cytochrome c easily binds CO and other heme ligands, which would react slowly or not at all with the native protein. Therefore in the presence of CO, reduced cytochrome c unfolds at lower denaturant concentrations than in the absence of this ligand, and rapid photochemical removal of CO from unfolded cytochrome c, is expected to trigger at least an incomplete refolding. This approach is complicated by the breakage of the proximal His-Fe bond that may occur as a consequence of CO photodissociation in the unfolded cytochrome c because of the so-called base elimination mechanism. Rebinding of CO to the four-coordinate heme yields kinetic intermediates unrelated to folding. Our hypothesis is supported by parallel observations carried out with protoheme and microperoxidase.  相似文献   

17.
The heme iron coordination of unfolded ferric and ferrous cytochrome c in the presence of 7-9 M urea at different pH values has been probed by several spectroscopic techniques including magnetic and natural circular dichroism (CD), electrochemistry, UV-visible (UV-vis) absorption and resonance Raman (RR). In 7-9 M urea at neutral pH, ferric cytochrome c is found to be predominantly a low spin bis-His-ligated heme center. In acidic 9 M urea solutions the UV-vis and near-infrared (NIR) magnetic circular dichroism (MCD) measurements have for the first time revealed the formation of a high spin His/H(2)O complex. The pK(a) for the neutral to acidic conversion is 5.2. In 9 M urea, ferrous cytochrome c is shown to retain its native ligation structure at pH 7. Formation of a five-coordinate high spin complex in equilibrium with the native form of ferrous cytochrome c takes place below the pK(a) 4.8. The formal redox potential of the His/H(2)O complex of cytochrome c in 9 M urea at pH 3 was estimated to be -0.13 V, ca. 100 mV more positive than E degrees ' estimated for the bis-His complex of cytochrome c in urea solution at pH 7.  相似文献   

18.
Cytochrome c(6) is a soluble heme protein that serves as a photosynthetic electron transport component in cyanobacteria and algae, carrying electrons from the cytochrome bf complex to photosystem I. The rapid accumulation of cytochrome c(6) sequence data from a wide range of species, combined with significant advances in determining high resolution three-dimensional structures, provides a powerful database for investigating the relationship between structure and function. The fact that the gene encoding cytochrome c(6) can be readily modified in a number of species adds to the usefulness of cytochrome c(6) as a tool for comparative analysis. Efforts to relate cytochrome c(6) sequence information to structure, and structural information to function depend on knowledge of the physical and thermodynamic properties of the cytochrome from different species. To this end we have determined the optical extinction coefficient, the oxidation/reduction midpoint potential, and the pH dependence of the midpoint potential of cytochrome c(6) isolated from three cyanobacteria, Arthrospira maxima, Microcystis aeruginosa, and Synechocystis 6803.  相似文献   

19.
This article reports the first X-ray structure of the soluble form of a c-type cytochrome isolated from a Gram-positive bacterium. Bacillus pasteurii cytochrome c(553), characterized by a low reduction potential and by a low sequence homology with cytochromes from Gram-negative bacteria or eukaryotes, is a useful case study for understanding the structure-function relationships for this class of electron-transfer proteins. Diffraction data on a single crystal of cytochrome c(553) were obtained using synchrotron radiation at 100 K. The structure was determined at 0.97-A resolution using ab initio phasing and independently at 1.70 A in an MAD experiment. In both experiments, the structure solution exploited the presence of a single Fe atom as anomalous scatterer in the protein. For the 0.97-A data, the phasing was based on a single data set. This is the most precise structure of a heme protein to date. The crystallized cytochrome c(553) contains only 71 of the 92 residues expected from the intact protein sequence, lacking the first 21 amino acids at the N-terminus. This feature is consistent with previous evidence that this tail, responsible for anchoring the protein to the cytoplasm membrane, is easily cleaved off during the purification procedure. The heme prosthetic group in B. pasteurii cytochrome c(553) is surrounded by three alpha-helices in a compact arrangement. The largely exposed c-type heme group features a His-Met axial coordination of the Fe(III) ion. The protein is characterized by a very asymmetric charge distribution, with the exposed heme edge located on a surface patch devoid of net charges. A structural search of a representative set of protein structures reveals that B. pasteurii cytochrome c(553) is most similar to Pseudomonas cytochromes c(551), followed by cytochromes c(6), Desulfovibrio cytochrome c(553), cytochromes c(552) from thermophiles, and cytochromes c from eukaryotes. Notwithstanding a low sequence homology, a structure-based alignment of these cytochromes shows conservation of three helical regions, with different additional secondary structure motifs characterizing each protein. In B. pasteurii cytochrome c(553), these motifs are represented by the shortest interhelix connecting fragments observed for this group of proteins. The possible relationships between heme solvent accessibility and the electrochemical reduction potential are discussed.  相似文献   

20.
The purple photosynthetic bacterium Rhodovulum sulfidophilum has an unusual reaction center- (RC-) bound cytochrome subunit with only three hemes, although the subunits of other purple bacteria have four hemes. To understand the electron-transfer pathway through this subunit, three mutants of R. sulfidophilum were constructed and characterized: one lacking the RC-bound cytochrome subunit, another one lacking cytochrome c(2), and another one lacking both of these. The mutant lacking the RC-bound cytochrome subunit was grown photosynthetically with about half the growth rate of the wild type, indicating that the presence of the cytochrome subunit, while not indispensable, is still advantageous for the photosynthetic electron transfer to support its growth. The mutant lacking both the cytochrome subunit and cytochrome c(2) showed a slower rate of growth by photosynthesis (about a fourth of that of the wild type), indicating that cytochrome c(2) is the dominant electron donor to the RC mutationally devoid of the cytochrome subunit. On the other hand, the mutant lacking only the cytochrome c(2) gene grew photosynthetically as fast as the wild type, indicating that cytochrome c(2) is not the predominant donor to the RC-bound triheme cytochrome subunit. We further show that newly isolated soluble cytochrome c-549 with a redox midpoint potential of +238 mV reduced the photooxidized cytochrome subunit in vitro, suggesting that c-549 mediates the cytochrome c(2)-independent electron transfer from the bc(1) complex to the RC-bound cytochrome subunit. These results indicate that the soluble components donating electrons to the RC-bound triheme cytochrome subunit are somewhat different from those of other purple bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号