首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Augmentation of murine immune responses by amphotericin B.   总被引:4,自引:0,他引:4  
Immunostimulant effects have been demonstrated in mice following single injections of amphotericin B or amphotericin methyl ester. Augmentation of both humoral and cell-mediated immune responses helps to explain the beneficial therapeutic effects observed in human and murine neoplasms after administration of amphotericin. Relevant to its immunological adjuvant properties, amphotericin produces striking reversible changes in murine thymus and splenic weights and in lymphoid organ histology. The chemical purity, nonimmunogenicity, and permissible toxicity of amphotericin recommend it as a model for the study of the cellular and molecular mechanisms of immunological adjuvants.  相似文献   

2.

Background

The etiologic agent of Chagas Disease is Trypanosoma cruzi. Acute infection results in patent parasitemia and polyclonal lymphocyte activation. Polyclonal B cell activation associated with hypergammaglobulinemia and delayed specific humoral immunity has been reported during T. cruzi infection in experimental mouse models. Based on preliminary data from our laboratory we hypothesized that variances in susceptibility to T. cruzi infections in murine strains is related to differences in the ability to mount parasite-specific humoral responses rather than polyclonal B cell activation during acute infection.

Methodology/Principal Findings

Relatively susceptible Balb/c and resistant C57Bl/6 mice were inoculated with doses of parasite that led to similar timing and magnitude of initial parasitemia. Longitudinal analysis of parasite-specific and total circulating antibody levels during acute infection demonstrated that C57Bl/6 mice developed parasite-specific antibody responses by 2 weeks post-infection with little evidence of polyclonal B cell activation. The humoral response in C57Bl/6 mice was associated with differential activation of B cells and expansion of splenic CD21highCD23low Marginal Zone (MZ) like B cells that coincided with parasite-specific antibody secreting cell (ASC) development in the spleen. In contrast, susceptible Balb/c mice demonstrated early activation of B cells and early expansion of MZ B cells that preceded high levels of ASC without apparent parasite-specific ASC formation. Cytokine analysis demonstrated that the specific humoral response in the resistant C57Bl/6 mice was associated with early T-cell helper type 1 (Th1) cytokine response, whereas polyclonal B cell activation in the susceptible Balb/c mice was associated with sustained Th2 responses and delayed Th1 cytokine production. The effect of Th cell bias was further demonstrated by differential total and parasite-specific antibody isotype responses in susceptible versus resistant mice. T cell activation and expansion were associated with parasite-specific humoral responses in the resistant C57Bl/6 mice.

Conclusions/Significance

The results of this study indicate that resistant C57Bl/6 mice had improved parasite-specific humoral responses that were associated with decreased polyclonal B cell activation. In general, Th2 cytokine responses are associated with improved antibody response. But in the context of parasite infection, this study shows that Th2 cytokine responses were associated with amplified polyclonal B cell activation and diminished specific humoral immunity. These results demonstrate that polyclonal B cell activation during acute experimental Chagas disease is not a generalized response and suggest that the nature of humoral immunity during T. cruzi infection contributes to host susceptibility.  相似文献   

3.
Memory and effector T cells modulate subsequently primed T cell responses to the same antigen. However, little is known about the impact of pre-existing memory and effector T cell immunity on subsequently primed immune responses to unrelated antigens. Here, we show that an antigen-primed first wave of Th1 and Th2 immunity enhanced or inhibited the subsequently primed T cell immunity to an unrelated antigen, depending on whether the second antigen was administered in the same or opposite type of adjuvant. The regulatory effects of the first wave of T cell immunity on the subsequent T cell responses to an unrelated antigen attenuated over time. Notably, following challenge with the second antigen, there was a mutual cross-regulation between the first and second wave of humoral responses to unrelated antigens. Thus, immunization with one antigen not only primes immune responses to that antigen, but also influences subsequently primed immune responses to unrelated antigens.  相似文献   

4.
The capacity of spleen cell populations enriched for T and B lymphocytes by a physical adherence column method to respond in vitro to phytomitogens and allogeneic lymphocytes was determined. Column filtrate cells (T lymphocytes) responded well to phytohaemagglutinin- and mitomycin-C-treated allogeneic spleen cells, but poorly to pokeweed mitogen. Adherent cell populations from the column (B and some T lymphocytes) responded well to pokeweed mitogen, but poorly to phytohaemagglutinin- and mitomycin-C-treated allogeneic cells.Purified peripheral T lymphocytes prepared from normal mouse spleen by the column method reconstituted the depleted in vitro antibody response to the thymic-dependent SRBC antigen of all B lymphocyte sources tested, namely, spleen cells from congenitally athymic mice, neonatally thymectomized mice, and adult thymectomized mice which had been reconstituted with bone marrow, and a lymphocyte population prepared by incubating spleen cells with anti-θ serum and complement. When transferred with sheep erythrocytes to congenitally athymic mice, purified peripheral T cells restored the in vivo IgM and IgG responses of these animals. These results confirm that the column filtrate is a thymus derived subpopulation of cells capable of cell-mediated immunity and cooperation with B lymphocytes in humoral immunity both in vitro and in vivo.  相似文献   

5.
p27Kip1 (p27) is an inhibitor of cyclin-dependent kinases. Inhibiting p27 protein degradation is an actively developing cancer therapy strategy. One focus has been to identify small molecule inhibitors to block recruitment of Thr-187-phosphorylated p27 (p27T187p) to SCFSkp2/Cks1 ubiquitin ligase. Since phosphorylation of Thr-187 is required for this recruitment, p27T187A knockin (KI) mice were generated to determine the effects of systemically blocking interaction between p27 and Skp2/Cks1 on tumor susceptibility and other proliferation related mouse physiology. Rb1+/− mice develop pituitary tumors with full penetrance and the tumors are invariably Rb1−/−, modeling tumorigenesis by two-hit loss of RB1 in humans. Immunization induced humoral immunity depends on rapid B cell proliferation and clonal selection in germinal centers (GCs) and declines with age in mice and humans. Here, we show that p27T187A KI prevented pituitary tumorigenesis in Rb1+/− mice and corrected decline in humoral immunity in older mice following immunization with sheep red blood cells (SRBC). These findings reveal physiological contexts that depend on p27 ubiquitination by SCFSkp2-Cks1 ubiquitin ligase and therefore help forecast clinical potentials of Skp2/Cks1-p27T187p interaction inhibitors. We further show that GC B cells and T cells use different mechanisms to regulate their p27 protein levels, and propose a T helper cell exhaustion model resembling that of stem cell exhaustion to understand decline in T cell-dependent humoral immunity in older age.  相似文献   

6.
Ab is a crucial component of protective immunity to infection, but Ab responses do not proceed normally when defects occur in a protein called signaling lymphocytic activation molecule-associated protein (SAP). To explain this Ab defect, we analyzed B cell and plasma cell responses under conditions of SAP deficiency. Our results demonstrate that SAP-deficient (SAP knockout (KO)) mice have a profound CD4 T cell-intrinsic defect in generating Ag-specific plasma cells following challenge with model Ags or influenza virus, resulting in low Ag-specific Ab titers. We also show that SAP is required in CD4 T cells for normal division and expansion of B cells. These B cell and plasma cell defects were observed during the expansion phase of the primary immune response, indicating early defects in Th cell activity. In fact, additional experiments revealed a nearly complete lack of T cell help for B cells in SAP KO mice. Our work suggests that the ability of SAP to promote T-dependent humoral immune responses is important for antiviral immunity because mice lacking SAP are unable to prevent high dose secondary influenza infection, and because passive transfer of IgG in immune serum from wild-type, but not SAP KO mice can protect mice from an otherwise lethal influenza infection. Overall, our results demonstrate that SAP is required in CD4 T cells for their ability to help B cell responses and promote influenza-specific immunity.  相似文献   

7.
The Glucocorticoid-Induced Tumor necrosis factor Receptor GITR, a member of the tumor necrosis factor receptor superfamily, has been shown to be important in modulating immune responses in the context of T cell immunity. B lymphocytes also express GITR, but a role of GITR in humoral immunity has not been fully explored. To address this question, we performed studies to determine the kinetics of GITR expression on naïve and stimulated B cells and the capacity of B cells to develop and mount antibody responses in GITR−/− mice. Results of our studies indicate that all mature B cells express GITR on the cell surface, albeit at different levels. Expression of GITR on naïve mature B cells is upregulated by BCR signaling, but is counteracted by helper T cell-related factors and other inflammatory signals in vitro. In line with these findings, expression of GITR on germinal center and memory B cells is lower than that on naïve B cells. However, the expression of GITR is strongly upregulated in plasma cells. Despite these differences in GITR expression, the absence of GITR has no effect on T cell-dependent and T cell-independent antibody responses to model antigens in GITR−/− mice, or on B cell activation and proliferation in vitro. GITR deficiency manifests only with a slight reduction of mature B cell numbers and increased turnover of naïve B cells, suggesting that GITR slightly contributes to mature B cell homeostasis. Overall, our data indicate that GITR does not play a significant role in B cell development and antibody responses to T-dependent and independent model antigens within the context of a GITR-deficient genetic background.  相似文献   

8.
The visceral form of leishmaniasis is the most severe form of the disease and of particular concern due to the emerging problem of HIV/visceral leishmaniasis (VL) co-infection in the tropics. Till date miltefosine, amphotericin B and pentavalent antimony compounds remain the main treatment regimens for leishmaniasis. However, because of severe side effects, there is an urgent need for alternative improved therapies to combat this dreaded disease. In the present study, we have used the murine model of leishmaniasis to evaluate the potential role played by soluble leishmanial antigen (SLA) pulsed-CpG-ODN stimulated dendritic cells (SLA-CpG-DCs) in restricting the intracellular leishmanial growth. We found that mice vaccinated with a single dose of SLA-pulsed DC stimulated by CpG-ODN were protected against a subsequent leishmanial challenge and had a dramatic reduction in parasite burden along with the generation of parasite specific cytotoxic T lymphocytes. Moreover, we demonstrate that the induction of protective immunity conferred by SLA-CpG-DCs depends entirely on the CXC chemokine IFN-γ-inducible protein 10 (CXCL10; IP-10). CXCL10 is directly involved in the generation of a parasite specific CD8+ T cell-mediated immune response. We observed significant reduction of CD8+ T cells in mice depleted of CXCL10 suggesting a direct role of CXCL10 in the generation of CD8+ T cells in SLA-CpG-DCs vaccinated mice. CXCL10 also contributed towards the generation of perforin and granzyme B, two important cytolytic mediators of CD8+ T cells, following SLA-CpG-DCs vaccination. Together, these findings strongly demonstrate that CXCL10 is critical for rendering a protective cellular immunity during SLA-CpG-DC vaccination that confers protection against Leishmania donovani infection.  相似文献   

9.
CD20 mAb-mediated B cell depletion is an effective treatment for B cell malignancies and some autoimmune diseases. However, the full effects of B cell depletion on natural, primary, and secondary Ab responses and the maintenance of Ag-specific serum Ig levels are largely unknown. The relationship between memory B cells, long-lived plasma cells, and long-lived humoral immunity also remains controversial. To address the roles of B cell subsets in the longevity of humoral responses, mature B cells were depleted in mice using CD20 mAb. Peritoneal B cell depletion reduced natural and Ag-induced IgM responses. Otherwise, CD20+ B cell depletion prevented humoral immune responses and class switching and depleted existing and adoptively transferred B cell memory. Nonetheless, B cell depletion did not affect serum Ig levels, Ag-specific Ab titers, or bone marrow Ab-secreting plasma cell numbers. Coblockade of LFA-1 and VLA-4 adhesion molecules temporarily depleted long-lived plasma cells from the bone marrow. CD20+ B cell depletion plus LFA-1/VLA-4 mAb treatment significantly prolonged Ag-specific plasma cell depletion from the bone marrow, with a significant decrease in Ag-specific serum IgG. Collectively, these results support previous claims that bone marrow plasma cells are intrinsically long-lived. Furthermore, these studies now demonstrate that mature and memory B cells are not required for maintaining bone marrow plasma cell numbers, but are required for repopulation of plasma cell-deficient bone marrow. Thereby, depleting mature and memory B cells does not have a dramatic negative effect on preexisting Ab levels.  相似文献   

10.
Contributions of humoral and cellular immunity in controlling neurotropic mouse hepatitis virus persistence within the CNS were determined in B cell-deficient J(H)D and syngeneic H-2(d) B cell+ Ab-deficient mice. Virus clearance followed similar kinetics in all mice, confirming initial control of virus replication by cellular immunity. Nevertheless, virus reemerged within the CNS of all Ab-deficient mice. In contrast to diminished T cell responses in H-2(b) B cell-deficient muMT mice, the absence of B cells or Ab in the H-2(d) mice did not compromise expansion, recruitment into the CNS, or function of virus-specific CD4+ and CD8+ T cells. The lack of B cells and lymphoid architecture thus appears to manifest itself on T cell responses in a genetically biased manner. Increasing viral load did not enhance frequencies or effector function of virus-specific T cells within the CNS, indicating down-regulation of T cell responses. Although an Ab-independent antiviral function of B cells was not evident during acute infection, the presence of B cells altered CNS cellular tropism during viral recrudescence. Reemerging virus localized almost exclusively to oligodendroglia in B cell+ Ab-deficient mice, whereas it also replicated in astrocytes in B cell-deficient mice. Altered tropism coincided with distinct regulation of CNS virus-specific CD4+ T cells. These data conclusively demonstrate that the Ab component of humoral immunity is critical in preventing virus reactivation within CNS glial cells. B cells themselves may also play a subtle role in modulating pathogenesis by influencing tropism.  相似文献   

11.
Modulation by lipoproteins of amphotericin B-induced immunostimulation   总被引:1,自引:0,他引:1  
Previous reports indicate that amphotericin B (AmB) and amphotericin methyl ester (AME) are potent adjuvants and polyclonal B-cell activators, and that most mouse strains can be classified as high or low responders to AmB and AME. In the present study, an inbred strain with very high plasma cholesterol concentration (HC strain) proved to be a low responder. Responses of HC mice to other immune stimuli were normal, suggesting that HC lymphoid cells expressed selectively weak responses to AmB and AME. Plasma levels of low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), and high-density lipoprotein subfraction (HDL2) were very much higher in HC mice than in AKR mice, an AmB-high responder strain. Low responses in vitro to AME were observed with lymphoid cells from HC mice and from AKR----HC bone marrow chimeras, i.e., AmB-high responder strain lymphocytes from a low responder host. However, enhanced AME responses were induced by a 2- or 48-hr preincubation of splenocytes from either HC or AKR mice in medium containing lipoprotein-depleted fetal calf serum. Taken together these studies indicate that plasma lipoproteins can inhibit lymphocyte responses to AME; this seems to account for the low AmB and AME responses of the HC strain. The mechanism of this lipoprotein-induced inhibition remains obscure, but it cannot be accounted for by competitive binding of AmB by lipoproteins.  相似文献   

12.
Development of long-term humoral immunity, characterized by the formation of long-lived plasma cells (PCs) in the bone marrow and memory B cells, is a critical component of protective immunity to pathogens, and as such it is the major goal of vaccination. However, the mechanisms involved in the generation of long-term humoral immunity remain poorly understood. In this study, we used IL-21R-deficient (IL-21R.KO) mice to examine the role of the IL-21 pathway in the development of the B cell memory response. Primary IgG serum Ab responses to the T cell-dependent Ag 4-hydroxy-3-nitrophenylacetyl (NP) hapten conjugated to chicken γ globulin were delayed in IL-21R.KO mice, but reached normal titers within 3 to 4 wk of immunization. IL-21R.KO mice formed germinal centers and generated normal numbers of PCs in their bone marrow. Additionally, memory B cell formation was similar in wild-type and IL-21R.KO mice. However, NP-specific memory B cells and PCs failed to expand following secondary immunization of IL-21R.KO mice, and consequently, secondary IgG Ab responses to NP hapten conjugated to chicken γ globulin were significantly impaired. These results identify the IL-21 pathway as a critical component of the memory B cell response.  相似文献   

13.
Influenza virus infection results in strong, mainly T-dependent, extrafollicular and germinal center B cell responses, which provide lifelong humoral immunity against the homotypic virus strain. Follicular T helper cells (T(FH)) are key regulators of humoral immunity. Questions remain regarding the presence, identity, and function of T(FH) subsets regulating early extrafollicular and later germinal center B cell responses. This study demonstrates that ICOS but not CXCR5 marks T cells with B helper activity induced by influenza virus infection and identifies germinal center T cells (T(GC)) as lymph node-resident CD4(+) ICOS(+) CXCR4(+) CXCR5(+) PSGL-1(lo) PD-1(hi) cells. The CXCR4 expression intensity further distinguished their germinal center light and dark zone locations. This population emerged strongly in regional lymph nodes and with kinetics similar to those of germinal center B cells and were the only T(FH) subsets missing in influenza virus-infected, germinal center-deficient SAP(-/-) mice, mice which were shown previously to lack protective memory responses after a secondary influenza virus challenge, thus indicting the nonredundant functions of CXCR4- and CXCR5-coexpressing CD4 helper cells in antiviral B cell immunity. CXCR4-single-positive T cells, present in B cell-mediated autoimmunity and regarded as "extrafollicular" helper T cells, were rare throughout the response, despite prominent extrafollicular B cell responses, revealing fundamental differences in autoimmune- and infection-induced T-dependent B cell responses. While all ICOS(+) subsets induced similar antibody levels in vitro, CXCR5-single-positive T cells were superior in inducing B cell proliferation. The regulation of T cell localization, marked by the single and coexpression of CXCR4 and CXCR5, might be an important determinant of T(FH) function.  相似文献   

14.
The generation of antigen-specific antibodies and the development of immunological memory require collaboration between B and T cells. T cell-secreted IL-4 is important for B cell survival, isotype switch to IgG1 and IgE, affinity maturation, and the development of germinal centers (GC). Fyn, a member of the Src family tyrosine kinase, is widely expressed in many cell types, including lymphocytes. This kinase is known to interact with both the B cell and T cell receptor (BCR and TCR, respectively). While Fyn deletion does not impair the development of immature T cells and B cells, TCR signaling is altered in mature T cells. The current study demonstrates that Fyn deficient (KO) B cells have impaired IL-4 signaling. Fyn KO mice displayed low basal levels of IgG1, IgE and IgG2c, and delayed antigen-specific IgG1 and IgG2b production, with a dramatic decrease in antigen-specific IgG2c following immunization with a T-dependent antigen. Defects in antibody production correlated with significantly reduced numbers of GC B cells, follicular T helper cells (TFH), and splenic plasma cells (PC). Taken together, our data demonstrate that Fyn kinase is required for optimal humoral responses.  相似文献   

15.
The cyclic di-nucleotide bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) is a candidate mucosal adjuvant with proven efficacy in preclinical models. It was shown to promote specific humoral and cellular immune responses following mucosal administration. To date, there is only fragmentary knowledge on the cellular and molecular mode of action of c-di-AMP. Here, we report on the identification of dendritic cells and macrophages as target cells of c-di-AMP. We show that c-di-AMP induces the cell surface up-regulation of T cell co-stimulatory molecules as well as the production of interferon-β. Those responses were characterized by in vitro experiments with murine and human immune cells and in vivo studies in mice. Analyses of dendritic cell subsets revealed conventional dendritic cells as principal responders to stimulation by c-di-AMP. We discuss the impact of the reported antigen presenting cell activation on the previously observed adjuvant effects of c-di-AMP in mouse immunization studies.  相似文献   

16.
Immunogenic cell death induced by cytotoxic compounds contributes to the success of selected chemotherapies by eliciting a protective anticancer immune response, which is mediated by CD4+ and CD8+ T cells producing interferon-γ. In many instances, cancer progression is associated with high titers of tumor-specific antibodies, which become detectable in the serum, but whose functional relevance is elusive. Here, we explored the role of humoral immune responses in the anticancer efficacy of anthracyclines. Chemotherapy reduced the number of tumor-infiltrating B cells, and failed to promote humoral responses against immunodominant tumor antigens. Although anthracycline-based anticancer chemotherapies failed in T cell-deficient mice, they successfully reduced the growth of cancers developing in mice lacking B lymphocytes (due to the injection of a B-cell-depleting anti-CD20 antibody), immunoglobulins (Igs) or Ig receptors (Fc receptor) due to genetic manipulations. These results suggest that the humoral arm of antitumor immunity is dispensable for the immune-dependent therapeutic effect of anthracyclines against mouse sarcoma. In addition, we show here that the titers of IgA and IgG antibodies directed against an autoantigen appearing at the cell surface of tumor cells post chemotherapy (calreticulin, CRT) did not significantly increase in patients treated with anthracyclines, and that anti-CRT antibodies had no prognostic or predictive significance. Collectively, our data indicate that humoral anticancer immune responses differ from cellular responses in, thus far, that they do not contribute to the success of anthracycline-mediated anticancer therapies in human breast cancers and mouse sarcomas.  相似文献   

17.
IgE antibodies, administered to mice together with their specific antigen, enhance antibody and CD4+ T cell responses to this antigen. The effect is dependent on the low affinity receptor for IgE, CD23, and the receptor must be expressed on B cells. In vitro, IgE-antigen complexes are endocytosed via CD23 on B cells, which subsequently present the antigen to CD4+ T cells. This mechanism has been suggested to explain also IgE-mediated enhancement of immune responses in vivo. We recently found that CD23+ B cells capture IgE-antigen complexes in peripheral blood and rapidly transport them to B cell follicles in the spleen. This provides an alternative explanation for the requirement for CD23+ B cells. The aim of the present study was to determine whether B-cell mediated antigen presentation of IgE-antigen complexes explains the enhancing effect of IgE on immune responses in vivo. The ability of spleen cells, taken from mice 1–4 h after immunization with IgE-antigen, to present antigen to specific CD4+ T cells was analyzed. Antigen presentation was intact when spleens were depleted of CD19+ cells (i.e., primarily B cells) but was severely impaired after depletion of CD11c+ cells (i.e., primarily dendritic cells). In agreement with this, the ability of IgE to enhance proliferation of CD4+ T cells was abolished in CD11c-DTR mice conditionally depleted of CD11c+ cells. Finally, the lack of IgE-mediated enhancemen of CD4+ T cell responses in CD23-/- mice could be rescued by transfer of MHC-II-compatible as well as by MHC-II-incompatible CD23+ B cells. These findings argue against the idea that IgE-mediated enhancement of specific CD4+ T cell responses in vivo is caused by increased antigen presentation by B cells. A model where CD23+ B cells act as antigen transporting cells, delivering antigen to CD11c+ cells for presentation to T cells is consistent with available experimental data.  相似文献   

18.
We report on the humoral and cellular events following autologous immunization against an idiotype (Id62) borne on a murine monoclonal autoantibody to thyroglobulin, and their impact on the autoantibody response to thyroglobulin. BALB/c mice with a state of active auto-anti-idiotypic immunity and challenged with thyroglobulin in complete Freund's adjuvant 2 wk after the last immunization with idiotype were found to have a suppressed autoantibody response. This suppression could be adoptively transferred to syngeneic x-irradiated recipients by using whole spleen cells from idiotype-primed mice. Transfer of separate T and B lymphocyte populations proved instrumental in disecting humoral from cellular events and in establishing that whereas B cells were required for transferring an intact anti-idiotype antibody response, T cells from idiotype-primed mice were necessary to transfer suppression. These findings contribute to our understanding of the interrelationship between antigen, idiotype, and anti-idiotype in the immune response to self-antigens, and the role of certain idiotypes in regulating autoimmune responses.  相似文献   

19.
Development of delayed hypersensitivity (DHS) to human γ-globulin (HIgG) in mice was documented by histological analysis, by the kinetics of footpad swelling in animals exhibiting humoral or delayed responses, and by the failure of sera to transfer delayed reactions to normal, syngeneic recipients. Since cyclophosphamide (CY) treatment resulted in diminished humoral and augmented delayed reactions, we used this as a tool to explore the nature of the regulatory mechanisms which affect expression of this type of cell-mediated immunity. In order to evaluate the effect which the presence or absence of antigen-specific cells might exert on expression of DHS, we subjected mice to experimental regimes which would result in lymphocyte proliferation or depletion, respectively (see Bachvaroff, R., and Rapaport, F. T., Cell. Immunol. 15, 336, 1975). Cell proliferation was induced by injection of 80 μg of aqueous antigen on Day ?4; this was followed by sensitization with HIgG-CFA (Freund's adjuvant) on Day 0, and footpad challenge on Day 13. These mice exhibited strong humoral reactivity; three of six died of anaphylaxis following footpad challenge, and the remaining three showed a diminished delayed response. Similarly treated mice that, in addition, received 6 mg of CY 3 days after injection of aqueous antigen and, therefore, would have antigen-specific cells present showed greatly diminished humoral reactivity, due to B-cell depletion. However, they also exhibited a marked diminution in delayed responsiveness. The data clearly demonstrate that a nonantibody-mediated, possibly cell-directed, regulatory influence is exerted on DHS where cell proliferation has occurred. We next examined the impact which the depletion of proliferating cells would exert on the expression of DHS. Cell depletion was attempted by giving one injection of aqueous antigen (Day 0) early in a regime of chronic CY administration (Days ?1 through +3) ; antigen-induced proliferating cells would be susceptible to CY and, therefore, depleted under these conditions. The results show that mice receiving both aqueous antigen and CY have depressed humoral and markedly diminished delayed reactivity compared to animals that were injected with CY alone. Thus, the augmenting effect which CY exerts on DHS is abrogated by stimulation with aqueous antigen. One interpretation is that CY removes a regulatory cell population in the normal animal, thereby allowing enhanced expression of delayed responsiveness. Clearly, regulatory function cannot be attributed solely to bumoral antibody production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号