首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although renal hypertrophy is often associated with the progressive loss of renal function, the mechanism of hypertrophy is poorly understood. In both primary cultures of rabbit proximal tubules and NRK- 52E cells (a renal epithelial cell line), transforming growth factor beta 1 (TGF beta) converted epidermal growth factor (EGF)-induced hyperplasia into hypertrophy. TGF beta did not affect EGF-induced increases in c-fos mRNA abundance or cyclin E protein abundance, but inhibited EGF-induced entry into S, G2, and M phases. EGF alone increased the amount of hyperphosphorylated (inactive) pRB; TGF beta blocked EGF-induced pRB phosphorylation, maintaining pRB in the active form. To determine the importance of active pRB in TGF beta-induced hypertrophy, NRK-52E cells were infected with SV40 large T antigen (which inactivates pRB and related proteins and p53), HPV16 E6 (which degrades p53), HPV16 E7 (which binds and inactivates pRB and related proteins), or both HPV16 E6 and E7. In SV40 large T antigen expressing clones, the magnitude of EGF + TGF beta-induced hypertrophy was inhibited and was inversely related to the magnitude of SV40 large T antigen expression. In the HPV16-infected cells, EGF + TGF beta-induced hypertrophy was inhibited in E7- and E6E7-expressing, but not E6- expressing cells. These results suggest a requirement for active pRB in the development of EGF + TGF beta-induced renal epithelial cell hypertrophy. We suggest a model of renal cell hypertrophy mediated by EGF-induced entry into the cell cycle with TGF beta-induced blockade at G1/S, the latter due to maintained activity of pRB or a related protein.  相似文献   

2.
Fei JW  de Villiers EM 《PloS one》2012,7(4):e35540
UV exposure and p53 mutations are major factors in non-melanoma skin cancer, whereas a role for HPV infections has not been defined. Previous data demonstrated the wtp53-mediated degradation of cutaneous HPV20E6 by caspase-3. ΔNp63α and hot-spot mutant p53R248W conveyed a protective effect on HPV20E6 under these conditions. We demonstrate a differential regulation by wtp53 of the E6 genes of cutaneous types HPV4, HPV5, HPV7, HPV27, HPV38, HPV48, HPV60 and HPV77. Caspase- or proteasome-mediated down-regulation was HPV type dependent. Mutant p53R248W up-regulated expression of all these E6 proteins as did ΔNp63α except for HPV38E6 which was down-regulated by the latter. None of these cellular proteins affected HPV41E6 expression. Ectopic expression of both mutp53R248W and ΔNp63α in the normal NIKS keratinocyte cell line harbouring endogenous p53 and p63however led to a down-regulation of HPV20E6. We demonstrate that HPV20E6 expression in these cells is modulated by additional, yet unidentified, cellular protein(s), which are not necessarily involved in apoptosis or autophagy. We further demonstrate proliferation of HPV20E6-expressing keratinocytes. Levels of proteins involved in cell cycle control, cyclin-D1, cdk6 and p16(INK4a), phosphorylated pRB, as well as c-Jun and p-c-Jun, were all increased in these cells. HPV20E6 did not compete for the interaction between p16(INK4a) with cyclin-D1 or cdk6. Phosphorylation of pRB in the HPV20E6 expressing cells seems to be sufficient to override the cytokenetic block induced by the p16(INK4a)/pRB pathway. The present study demonstrates the diverse influence of p53 family members on individual cutaneous HPVE6 proteins. HPV20E6 expression also resulted in varying protein levels of factors involved in proliferation and differentiation.  相似文献   

3.
The human papillomavirus type 16 (HPV-16) E6 and E7 oncogenes are thought to play a role in the development of most human cervical cancers. These E6 and E7 oncoproteins affect cell growth control at least in part through their association with and inactivation of the cellular tumor suppressor gene products, p53 and Rb. To study the biological activities of the HPV-16 E6 and E7 genes in epithelial cells in vivo, transgenic mice were generated in which expression of E6 and E7 was targeted to the ocular lens. Expression of the transgenes correlated with bilateral microphthalmia and cataracts (100% penetrance) resulting from an efficient impairment of lens fiber cell differentiation and coincident induction of cell proliferation. Lens tumors formed in 40% of adult mice from the mouse lineage with the highest level of E6 and E7 expression. Additionally, when lens cells from neonatal transgenic animals were placed in tissue culture, immortalized cell populations grew out and acquired a tumorigenic phenotype with continuous passage. These observations indicate that genetic changes in addition to the transgenes are likely necessary for tumor formation. These transgenic mice and cell lines provide the basis for further studies into the mechanism of action of E6 and E7 in eliciting the observed pathology and into the genetic alterations required for HPV-16-associated tumor progression.  相似文献   

4.
Cells expressing human papillomavirus type 16 (HPV-16) E7, similar to those which express HPV-16 E6, are resistant to a p53-mediated G1 growth arrest. We examined the p53-mediated DNA damage response pathway in E7-expressing cells to determine the mechanism by which E7-containing cells continue to cycle. In response to DNA damage, no dramatic difference was detected in G1- or S-phase cyclin or cyclin-dependent kinase (Cdk) levels when E7-expressing cells were compared to the parental cell line, RKO. Furthermore, Cdk2 kinase activity was inhibited in both RKO cells and E7-expressing cells, while Cdk2 remained active in E6-expressing cells. However, the steady-state levels of pRB and p107 protein were substantially lower in E7-expressing cells than in the parental RKO cells or E6-expressing cells. There was no reduction in pRB mRNA levels, but the half-life of pRB in E7-expressing cells was markedly shorter. Infection of primary human foreskin keratinocytes with recombinant retroviruses expressing HPV-16 E7 resulted in a decrease in pRB protein levels, indicating this phenomenon is a consequence of E7 expression, not of immortalization or transformation. These data strongly suggest E7 interferes with the stability of pRB and p107 protein. We propose that the removal of these components of the p53-mediated G1 growth arrest pathway in E7-expressing cells contributes to the ability of E7 to overcome a p53-mediated G1 growth arrest.  相似文献   

5.
6.
The p53 tumor suppressor protein can induce both cell cycle arrest and apoptosis in DNA-damaged cells. In human carcinoma cell lines expressing wild-type p53, expression of E7 allowed the continuation of full cell cycle progression following DNA damage, indicating that E7 can overcome both G1 and G2 blocks imposed by p53. E7 does not interfere with the initial steps of the p53 response, however, and E7 expressing cells showed enhanced expression of p21(waf1/cip1) and reductions in cyclin E- and A-associated kinase activities following DNA damage. One function of cyclin-dependent kinases is to phosphorylate pRB and activate E2F, thus allowing entry into DNA synthesis. Although E7 may substitute for this activity during cell division by directly targeting pRB, continued cell cycle progression in E7-expressing cells was associated with phosphorylation of pRB, suggesting that E7 permits the retention of some cyclin-dependent kinase activity. One source of this activity may be the E7-associated kinase, which was not inhibited following DNA damage. Despite allowing cell cycle progression, E7 was unable to protect cells from p53-induced apoptosis, and the elevated apoptotic response seen in these cells correlated with the reduction of cyclin A-associated kinase activity. It is possible that inefficient cyclin A-dependent inactivation of E2F at the end of DNA synthesis contributes to the enhanced apoptosis displayed by E7-expressing cells.  相似文献   

7.
8.
9.
Reversal of human cellular senescence: roles of the p53 and p16 pathways   总被引:34,自引:0,他引:34  
Telomere erosion and subsequent dysfunction limits the proliferation of normal human cells by a process termed replicative senescence. Replicative senescence is thought to suppress tumorigenesis by establishing an essentially irreversible growth arrest that requires activities of the p53 and pRB tumor suppressor proteins. We show that, depending on expression of the pRB regulator p16, replicative senescence is not necessarily irreversible. We used lentiviruses to express specific viral and cellular proteins in senescent human fibroblasts and mammary epithelial cells. Expression of telomerase did not reverse the senescence arrest. However, cells with low levels of p16 at senescence resumed robust growth upon p53 inactivation, and limited growth upon expression of oncogenic RAS. In contrast, cells with high levels of p16 at senescence failed to proliferate upon p53 inactivation or RAS expression, although they re-entered the cell cycle without growth after pRB inactivation. Our results indicate that the senescence response to telomere dysfunction is reversible and is maintained primarily by p53. However, p16 provides a dominant second barrier to the unlimited growth of human cells.  相似文献   

10.
Over the recent few years rutin has gained wider attention in exhibiting inhibitory potential against several oncotargets for inducing apoptotic and antiproliferative activity in several human cancer cells. Several deregulated signaling pathways are implicated in cancer pathogenesis. Therefore we have inclined our research towards exploring the anticancerous efficacy of a very potent phytocompound for modulating the incontinent expression of these two crucial E6 and E7 oncogenes. Further, inhibitory efficacy of rutin against human papillomavirus (HPV)-E6 and E7 oncoproteins in cervical cancer has not been elucidated yet. This research addresses the growth inhibitory efficacy of rutin against E6 and E7 oncoproteins in HeLa cells, which is known to inactivate several tumor suppressor proteins such as p53 and pRB. Rutin treatment exhibited reduced cell viability with increased cell accumulation in G0/G1 phase of cell cycle in HeLa cell lines. Additionally, rutin treatment has also led to down-regulation of E6 and E7 expression associated with an increased expression of p53 and pRB levels. This has further resulted in enhanced Bax expression and decreased Bcl-2 expression releasing cytochrome c into cytosol followed by caspase cascade activation with cleavage of caspase-3, caspase-8 and caspase-9. Further, in silico studies have also supported our in vitro findings by exhibiting significant binding energy against selected target oncoproteins. Therefore, our research findings might recommend rutin as one of the potent drug candidate in cervical cancer management via targeting two crucial oncoproteins associated with viral progression.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Monolayer cultures of human foreskin and ectocervical epithelial cells were infected with retroviral vectors expressing HPV16 oncogenes, selected for G418 resistance, and cultured organotypically so that they reformed the fully differentiated, stratified squamous tissues from which they were originally derived. Expression of HPV16 E7 prevented cell cycle withdrawal in the suprabasal layers of these stratified cultures but had no effect on terminal differentiation. Cultures expressing E7 alone and those coexpressing E6 and E7 were identical in terms of suprabasal proliferation and terminal differentiation, but they differed in expression of the endogenous tumor suppressor protein p53. Immunohistochemically detectable p53 protein localized to the proliferative compartment in normal and E7-containing cultures but was undetectable in those cultures which coexpressed E6 and E7. This result suggests that E7-induced suprabasal proliferation is independent of the steady-state level of p53.  相似文献   

20.
The activity of the retinoblastoma protein pRB is regulated by phosphorylation that is mediated by G(1) cyclin-associated cyclin-dependent kinases (CDKs). Since the pRB-related pocket proteins p107 and p130 share general structures and biological functions with pRB, their activity is also considered to be regulated by phosphorylation. In this work, we generated phosphorylation-resistant p107 and p130 molecules by replacing potential cyclin-CDK phosphorylation sites with non-phosphorylatable alanine residues. These phosphorylation-resistant mutants retained the ability to bind E2F and cyclin. Upon introduction into p16(INK4a)-deficient U2-OS osteosarcoma cells, in which cyclin D-CDK4/6 is dysregulated, the phosphorylation-resistant mutants, but not wild-type p107 or p130, were capable of inhibiting cell proliferation. Furthermore, when ectopically expressed in pRB-deficient SAOS-2 osteosarcoma cells, the wild-type as well as the phosphorylation-resistant pRB family proteins were capable of inducing large flat cells. The flat cell-inducing activity of the wild-type proteins, but not that of the phosphorylation-resistant mutants, was abolished by coexpressing cyclin E. Our results indicate that the elevated cyclin D- or cyclin E-associated kinase leads to systemic inactivation of the pRB family proteins and suggest that dysregulation of the pRB kinase provokes an aberrant cell cycle in a broader range of cell types than those induced by genetic inactivation of the RB gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号