首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isoelectric focusing was used to compare the complement of phosphoglucose isomerase isoenzymes in a wild-type strain of Saccharomyces cerevisiae and in a strain with a deletion in the PGI1 structural gene. Deletion of the PGI1 gene did not result in the absence of the high-Km isoenzyme I but the low-Km isoenzyme II was absent. Hence, the isoenzymes must be the products of two genes. If PGI1 were the sole structural gene its deletion would result in the disappearance of both isoenzymes. After a temperature shift-up a cdc30-bearing strain had cell cycle arrested and contained only 8% of the polysaccharide in the wild-type. Phosphoglucose isomerase is required for the synthesis of fructose 6-phosphate (F6-P), a precursor of the cell wall components chitin and mannoprotein ('mannan'), which are a polysaccharide and contain polysaccharide, respectively. Since the cdc30 mutation confers a temperature-sensitive phosphoglucose isomerase, the likely explanation for cell cycle arrest caused by this mutation is that the defective phosphoglucose isomerase results in a reduction of F6-P and hence an inability to synthesize the mannan and chitin needed for cytokinesis and cell separation. Revertants of a pgi1-1 bearing strain were selected for their ability to grow on glucose at 25 degrees C and this yielded a number of different phenotypes. Amongst the isolates was a strain which had undergone an intragenic reversion at the pgi1 locus, designated pgi1-1,100. This mutation permits growth and cell division at 25 degrees C but results in cell cycle arrest at 36 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The cdc30 mutation in the yeast Saccharomyces cerevisiae causes cell cycle arrest late in nuclear division when cells are shifted from the permissive temperature of 25 degrees C to the restrictive temperature of 36.5 degrees C. Cell cycle arrest at 36.5 degrees C is dependent upon the carbon source used: a shift-up in glucose containing media results in cell cycle blockade, whereas a shift-up in ethanol, fructose, glycerol, glycerol plus ethanol, or mannose does not. Metabolite analyses showed accumulation of glucose 6-phosphate in a cdc30-bearing strain after a temperature shift-up in glucose-containing medium. Thermal denaturation studies and kinetic measurements indicate the existence of two isoenzymes of phosphoglucose isomerase (EC 5.3.1.9); one of which is apparently altered in the temperature-sensitive cell cycle mutant. We propose that the gene products of both the CDC30 and PG11 genes are required for cell cycle progression in glucose media and that the PGI1 gene product has a regulatory function over the CDC30 gene product.  相似文献   

3.
An altered adenylate cyclase in cdc35-1 cell division cycle mutant of yeast   总被引:2,自引:0,他引:2  
Adenylate cyclase activity was studied in Saccharomyces cerevisiae's cell division cycle (cdc) mutant 35-1. The temperature sensitive mutant cdc35-1 was previously mapped as an allele of cyr, the adenylate cyclase gene. However, the adenylate cyclase activities of membranes prepared from cdc35-1 were not thermosensitive. The adenylate cyclase activity of cdc35-1 was found to have an altered Mn2+ dependency and did not respond to Gpp(NH)p stimulation. These results suggest that cdc35-1 mutation may not be at the catalytic site but at a site where adenylate cyclase interacts with regulatory proteins.  相似文献   

4.
The cell-cycle specific mutation cdc40-1, which has been previously shown to be sensitive to MMS at the restrictive temperature, was further characterized as a DNA-repair-deficient mutation. cdc40-1 mutants shown only slight sensitivity to UV irradiation. Double mutant studies shown that rad6-l is epistatic to cdc40-1 with respect to sensitivity to UV irradiation and MMS. rad50-1 is epistatic to cdc40-1 with respect to MMS sensitivity in G1 stationary cells, but not in logarithmic cultures. An additive effect is seen between cdc40-1 and rad50-1 with respect to UV irradiation. cdc40-1 mutants are defective in UV-induced mutagenesis at the restrictive temperature. UV-induced levels of recombination are normal at both temperatures, while MMS-induced recombination is enhanced at the restrictive temperature.  相似文献   

5.
6.
R Booher  D Beach 《The EMBO journal》1987,6(11):3441-3447
A cold-sensitive (cs) allele of cdc2, a gene that acts in both the G1 and G2 phases of the fission yeast cell cycle, has been isolated by classical mutagenesis. Further mutagenesis of a cdc2cs strain yielded an extragenic suppressor that rescued the cs cell cycle defect but simultaneously conferred a temperature-sensitive (ts) cdc phenotype. This suppressor mutation was shown to be an allele of cdc13, a previously identified gene. A variety of allele-specific interactions between cdc2 and cdc13 were discovered. These included suppression of cdc13ts alleles by introduction of the cdc2+ gene on a multi-copy plasmid vector. cdc13+ is required in G2 for mitotic initiation and was shown to play no role in the G1 phase of the cell cycle. cdc2+, however, is essential in G1 for DNA replication and in G2 for mitosis. The newly isolated cs allele of cdc2 that is rescued by a ts allele of cdc13 is defective only in its G2 function. cdc13+ cooperates with cdc2+ in the initiation of mitosis but not in the regulation of DNA replication. We propose that the cdc13+ gene product might be a G2-specific substrate of the cdc2+ protein kinase.  相似文献   

7.
8.
Two roles for the Saccharomyces cerevisiae Cdc13 protein at the telomere have previously been characterized: it recruits telomerase to the telomere and protects chromosome ends from degradation. In a synthetic lethality screen with YKU70, the 70-kDa subunit of the telomere-associated Yku heterodimer, we identified a new mutation in CDC13, cdc13-4, that points toward an additional regulatory function of CDC13. Although CDC13 is an essential telomerase component in vivo, no replicative senescence can be observed in cdc13-4 cells. Telomeres of cdc13-4 mutants shorten for about 150 generations until they reach a stable level. Thus, in cdc13-4 mutants, telomerase seems to be inhibited at normal telomere length but fully active at short telomeres. Furthermore, chromosome end structure remains protected in cdc13-4 mutants. Progressive telomere shortening to a steady-state level has also been described for mutants of the positive telomere length regulator TEL1. Strikingly, cdc13-4/tel1Delta double mutants display shorter telomeres than either single mutant after 125 generations and a significant amplification of Y' elements after 225 generations. Therefore CDC13, TEL1, and the Yku heterodimer seem to represent distinct pathways in telomere length maintenance. Whereas several CDC13 mutants have been reported to display elongated telomeres indicating that Cdc13p functions in negative telomere length control, we report a new mutation leading to shortened and eventually stable telomeres. Therefore we discuss a key role of CDC13 not only in telomerase recruitment but also in regulating telomerase access, which might be modulated by protein-protein interactions acting as inhibitors or activators of telomerase activity.  相似文献   

9.
Polarized cell division is a fundamental process that occurs in a variety of organisms; it is responsible for the proper positioning of daughter cells and the correct segregation of cytoplasmic components. The SPA2 gene of yeast encodes a nonessential protein that localizes to sites of cell growth and to the site of cytokinesis. spa2 mutants exhibit slightly altered budding patterns. In this report, a genetic screen was used to isolate a novel ochre allele of CDC10, cdc10-10; strains containing this mutation require the SPA2 gene for growth. CDC10 encodes a conserved potential GTP-binding protein that previously has been shown to localize to the bud neck and to be important for cytokinesis. The genetic interaction of cdc10-10 and spa2 suggests a role for SPA2 in cytokinesis. Most importantly, strains that contain a cdc10-10 mutation and those containing mutations affecting other putative neck filament proteins do not form buds at their normal proximal location. The finding that a component involved in cytokinesis is also important in bud site selection provides strong evidence for the cytokinesis tag model; i.e., critical components at the site of cytokinesis are involved in determining the next site of polarized growth and division.  相似文献   

10.
A temperature-sensitive Schizosaccharomyces pombe mutant, cdc16-116, has been isolated which undergoes uncontrolled septation during its cell division cycle. The mutant accumulates two types of cells after 3 h of growth at the restrictive temperature: (i) type I cells (85% of the population), which complete nuclear division and then form up to five septa between the divided nuclei; and (ii) type II cells (15% of the population), which form an asymmetrically situated septum in the absence of any nuclear division. cdc16-116 is a monogenic recessive mutation unlinked to any previously known cdc gene of S. pombe. It is not affected in a previously reported control by which septation is dependent upon completion of nuclear division. We propose the cdc16-116 is unable to complete septum formation and proceed to cell separation and is also defective in a control which prevents the manufacture of more than one septum in each cell cycle.  相似文献   

11.
Saccharomyces cerevisiae proteins Cdc4 and Cdc20 contain WD40 repeats and participate in proteolytic processes. However, they are thought to act at two different stages of the cell cycle: Cdc4 is involved in the proteolysis of the Cdk inhibitor, Sic1, necessary for G(1)/S transition, while Cdc20 mediates anaphase-promoting complex-dependent degradation of anaphase inhibitor Pds1, a process necessary for the onset of chromosome segregation. We have isolated three mutant alleles of CDC4 (cdc4-10, cdc4-11, and cdc4-16) which suppress the nuclear division defect of cdc20-1 cells. However, the previously characterized mutation cdc4-1 and a new allele, cdc4-12, do not alleviate the defect of cdc20-1 cells. This genetic interaction suggests an additional role for Cdc4 in G(2)/M. Reexamination of the cdc4-1 mutant revealed that, in addition to being defective in the onset of S phase, it is also defective in G(2)/M transition when released from hydroxyurea-induced S-phase arrest. A second function for CDC4 in late S or G(2) phase was further confirmed by the observation that cells lacking the CDC4 gene are arrested both at G(1)/S and at G(2)/M. We subsequently isolated additional temperature-sensitive mutations in the CDC4 gene (such as cdc4-12) that render the mutant defective in both G(1)/S and G(2)/M transitions at the restrictive temperature. While the G(1)/S block in both cdc4-12 and cdc4Delta mutants is abolished by the deletion of the SIC1 gene (causing the mutants to be arrested predominantly in G(2)/M), the preanaphase arrest in the cdc4-12 mutant is relieved by the deletion of PDS1. Collectively, these observations suggest that, in addition to its involvement in the initiation of S phase, Cdc4 may also be required for the onset of anaphase.  相似文献   

12.
13.
The product of the cdc2 gene encodes the p34cdc2 protein kinase that controls entry of yeast cells into S phase and mitosis. In higher eukaryotes, at least two cdc2 -like genes appear to be involved in these processes. A cdc2 homologous gene has previously been isolated from alfalfa and shown to complement a fission yeast cdc2 ts mutant. Here the isolation of cdc2MsB , a cognate cdc2 gene from alfalfa ( Medicago sativa ) is reported. Southern blot analysis shows that cdc2MsA and cdc2MsB are present as single copy genes in different tetraploid Medicago species. cdc2MsB encodes a slightly larger mRNA (1.5 kb) than cdc2MsA (1.4 kb). Both genes were found to be expressed at similar steady state levels in different alfalfa organs. Expression levels of both cdc2Ms genes correlate with the proliferative state of the organs. Complementation studies revealed that in contrast to cdc2MsA, cdc2MsB was not able to rescue a cdc2 ts fission yeast mutant. cdc2MsB was also unable to rescue a G2/M-arrested cdc28 ts budding yeast mutant which could be rescued by expression of the cdc2MsA gene. Conversely, cdc2MsB but not cdc2MsA was found to complement the G1/S block of another cdc28 ts budding yeast mutant. These results suggest that cdc2MsA and cdc2MsB function at different control points in the cell cycle.  相似文献   

14.
Mutants of Saccharomyces cerevisiae that are derepressed for meiosis and spore formation have been isolated and characterized genetically. All are the result of single, recessive nuclear mutations that fall into four linkage groups. Three of these groups are represented by spd1, spd3 and spd4 mutations, which in homozygous diploids confer poor growth and extensive sporulation on a range of non-fermentable media. Haploids carrying any of these mutations are arrested under these conditions in the G1 phase of the cell division cycle as large unbudded cells. The alleles of the spd2 mutation complemented all other mutations but were very closely linked to the spd1 locus. The fourth linkage group was represented by a mutation conferring temperature-sensitive growth and derepressed sporulation on homozygous diploids grown between 25 degrees C and 30 degrees C on media containing galactose or glycerol, but not glucose, as energy source. Above 30 degrees C this mutant lysed on all media. The mutation it carried failed to complement available cdc25 mutations. These data bring to five the number of loci at which mutation can lead to derepressed sporulation (spd1, spd3, spd4, cdc25 and cdc35). The spd1 locus has been mapped 13.9 cM to the left of the centromere on chromosome XV, adjacent to the SUP3 gene. Diploid strains homozygous for spd mutations are genetically unstable, giving rise to asporogenous mutants at high frequency, usually as the result of a second mutation unlinked to the spd mutation. Diploids homozygous for these mutations, and for spd mutations, show an altered regulation of the formulation of at least three polypeptides normally subject to carbon source repression.  相似文献   

15.
A mouse temperature-sensitive mutant for cell growth, tsFT210, was characterized. More than 90% of the mutant cells were arrested at the G2 phase at the nonpermissive temperature (39 degrees C). In this mutant, the activity of cdc2 kinase did not increase at the nonpermissive temperature (39 degrees C) but did increase at the permissive temperature (33 degrees C) at the G2/M phase in the cell cycle. The in vitro activity of cdc2 kinase of tsFT210 was more thermolabile than that of wild-type cells. The amount of cdc2 kinase in tsFT210 cells decreased when the cells were incubated at 39 degrees C, but that in wild-type cells did not. Using the polymerase chain reaction (PCR), a point mutation in cDNA of cdc2 kinase was found in tsFT210, and as a result, the proline of wild-type cdc2 kinase at the 272 amino acid residues from N-terminal methionine changed to serine. During preparation of this paper, the detection of two mutation sites of this mutant was reported (Th'ng, J.P.H., Wright, P.S., Hamaguchi, J., Lee, M.G., Norbury, C.J., Nurse, P., and Bradbury, E.M. (1990). Cell, 63: 313-324); one was the same site as reported here, the other was A-to-G change in the 154th base from base A in initial ATG, and this caused the change of isoleucine to valine in the PSTAIR region of cdc2 kinase. This mutation in the PSTAIR region was not detected by us. The probable reason for this discrepancy was in that Th'ng and his group sequenced a cDNA cloned from the amplified cDNAs by PCR, and did not directly sequence the amplified cDNA as we did.  相似文献   

16.
A calcium-sensitive cls4 mutant of Saccharomyces cerevisiae ceased dividing in the presence of 100 mM CaCl2, producing large, round, unbudded cells. Since its DNA replication and nuclear division still continued after interruption of normal budding, the cls4 mutant had a defect in bud formation in Ca2+-rich medium. Its calcium content and calcium uptake activity were the same as those of the wild-type strain, suggesting that the primary defect of the mutation was not in a Ca2+ transport system. Genetic analysis showed that the cls4 mutation did not complement the cdc24-1 mutation, which is known to be a temperature-sensitive mutation affecting bud formation and localized cell surface growth at a restrictive temperature. Moreover, cls4 was tightly linked to cdc24, and a yeast 3.4-kilobase-pair DNA fragment carrying both the CLS4 and CDC24 genes was obtained. These results suggest that the cls4 mutation is allelic to the cdc24 mutation. Thus, Ca2+ ion seems to control bud formation and bud-localized cell surface growth.  相似文献   

17.
18.
Summary Phosphoglucose isomerase (PGI) and 16 other biochemical genetic markers were studied in an Israeli-Arab family previously described for hereditary deficiency of adenylate kinase (AK) and glucose 6-phosphate dehydrogenase (G6PD). In this inbred family a rare PGI*3 allele was observed in 11 of 32 members tested, indicating an autosomal codominant inberitance. The electrophoretic mobility of this allele is similar to that of the PGI*3 allele found in Indian populations, but unlike the Indian allele, it has a very low specific activity and heat stability. This PGI*3 allele, designated PGI*3 (Israel), seems to be a different unstable mutation and along with AK and G6PD deficiencies seems to be associated with severe anaemia.  相似文献   

19.
The ability of a functional gene to complement a nonfunctional gene may depend upon the intracellular relationship of the two genes. If so, the function of the gene product in question must be limited in time or in space. CDC (cell division cycle) gene products of Saccharomyces cerevisiae control discrete steps in cell division; therefore, they constitute reasonable candidates for genes that function with temporal or spatial restrictions. In an attempt to reveal such restrictions, we compared the ability of a CDC gene to complement a temperature-sensitive cdc gene in diploids where the genes are located within the same nucleus to complementation in heterokaryons where the genes are located in different nuclei. In CDC X cdc matings, complementation was monitored in rare heterokaryons by assaying the production of cdc haploid progeny (cytoductants) at the restrictive temperature. The production of cdc cytoductants indicates that the cdc nucleus was able to complete cell division at the restrictive temperature and implies that the CDC gene product was provided by the other nucleus or by cytoplasm in the heterokaryon. Cytoductants from cdc28 or cdc37 crosses were not efficiently produced, suggesting that these two genes are restricted spatially or temporally in their function. We found that of the cdc mutants tested 33 were complemented; cdc cytoductants were recovered at least as frequently as CDC cytoductants. A particularly interesting example was provided by the CDC4 gene. Mutations in CDC4 were found previously to produce a defect in both cell division and karyogamy. Surprisingly, the cell division defect of cdc4 nuclei is complemented by CDC4 nuclei in a heterokaryon, whereas the karyogamy defect is not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号