首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermus aquaticus contains four major fatty acids, iso-C(15) (28%), iso-C(16) (9%), normal-C(16) (13%), and iso-C(17) (48%), when grown at 70 C, as determined by gas chromatography and mass spectrometry. Small amounts of iso-C(12), normal-C(12:1), iso-C(13), normal-C(14), iso-C(14), and normal-C(15:1) were also detected. A change in growth temperature (50 to 75 C at 5-C intervals) affects a shift in the proportions of some of the fatty acids. The proportions of the monoenoic and branched-C(17) fatty acids decreased and the proportions of the higher-melting iso-C(16) and normal-C(16) fatty acids increased. Cells grown at 75 C contained 70% more total fatty acids than cells grown at 50 C. The largest increases, in absolute amounts, were in the content of iso-C(16) and normal-C(16) fatty acids, with only a 1.6-fold increase in the major iso-C(15) and iso-C(17) fatty acids. There was a 2.5-fold decrease in normal-C(15:1) and at least a 24-fold decrease in anteiso-C(17), which is present at 50 and 55 C but not at higher temperatures. There was no difference in proportion or amount of fatty acids between exponential and stationary-phase cells grown at 70 C. When cells were grown on glutamate instead of yeast-extract and tryptone at 70 C, the total fatty acid content remained constant, but there was an increase in the proportions of iso-C(16) and normal-C(16) fatty acids concomitant with a decrease in the proportions of the iso-C(15) and iso-C(17) fatty acids.  相似文献   

2.
Fatty acids produced by 22 strains of 10 species of the genus Bacillus were analyzed on a very efficient and selective gas-liquid chromatographic column. All of the 10 species, alvei, brevis, cereus, circulans, licheniformis, macerans, megaterium, polymyxa, pumilus, and subtilis, produced eight fatty acids, six branched (anteiso-C(15), anteiso-C(17), iso-C(14), iso-C(15), iso-C(16), and iso-C(17)) and two normal (n-C(14) and n-C(16)). In all cases, the six branched-chain fatty acids made up over 60% of the total fatty acids. In addition to the eight fatty acids, B. cereus produced four extra fatty acids, three branched (anteiso-C(13), iso-C(12), and iso-C(13)) and one monoenoic-n-C(16). Furthermore, there were distinct differences in the relative amounts of fatty acids produced between B. cereus and the remaining nine species. B. cereus produced iso-C(15) fatty acid in the largest amount on a glucose-yeast extract medium as well as on Pennassay Broth. On the other hand, for the remaining nine species, anteiso-C(15) fatty acid was the major fatty acid from the glucose-yeast extract medium, whereas the amount of iso-C(15) fatty acid from Penassay Broth became comparable to that of anteiso-C(15) fatty acid. Mechanisms and various factors affecting the fatty acid distribution pattern in the 10 Bacillus species are discussed.  相似文献   

3.
Gram-negative rod shaped bacterium Myxococcus xanthus DK1622 produces a smooth-type LPS. The structure of the polysaccharide O-chain and the core-lipid A region of the LPS has been determined by chemical and spectroscopic methods. The O-chain was built up of disaccharide repeating units having the following structure: -->6)-alpha-D-Glcp-(1-->4)-alpha-D-GalpNAc6oMe*-(1--> with partially methylated GalNAc residue. The core region consisted of a phosphorylated hexasaccharide, containing one Kdo residue, unsubstituted at O-4, and no heptose residues. The lipid A component consisted of beta-GlcN-(1-->6)-alpha-GlcN1P disaccharide, N-acylated with 13-methyl-C14-3OH (iso-C15-3OH), C16-3OH, and 15-methyl-C16-3OH (iso-C17-3OH) acids. The lipid portion contained O-linked iso-C16 acid.  相似文献   

4.
A novel strictly aerobic, gliding, Gram-negative, rod-shaped, halo- and mesophilic bacterium (TD-ZX30(T)) was isolated from a seawater sample collected on the Pacific coastline of Japan near Kamakura City (Fujisawa, Kanagawa). The temperature range for growth of TD-ZX30(T) was between 16 and 44 degrees C. The DNA G+C content was 32.0mol%. The predominant fatty acids were iso-C(15:1) G, iso-C(15:0), iso-C(16:0) 3-OH, iso-C(15:0) 3-OH, Summed feature (iso-C(15:0) 2-OH and/or C(16:1)omega7c), iso-C(17:0) 3-OH, and C(15:0). MK-6 was the only respiratory quinone. Zeaxanthin was the major carotenoid pigment produced but flexirubin-type pigments were not produced. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that TD-ZX30(T) belonged to a distinct lineage in the family Flavobacteriaceae, sharing 93.9% sequence similarity with the nearest species Olleya marilimosa. TD-ZX30(T) could be distinguished from the other members of the family Flavobacteriaceae by a number of chemotaxonomic and phenotypic characteristics. The results of polyphasic taxonomic analyses suggested that TD-ZX30(T) represents a novel genus and a novel species, for which the name Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov. is proposed. The type strain is TD-ZX30(T) (=NBRC 102119=CCUG 53614=DSM 18436).  相似文献   

5.
A strictly aerobic, Gram-negative, rod-shaped bacterium (strain CC-SAMT-1(T)) showing gliding motility was isolated from coastal seawater of China Sea, Taiwan. Strain CC-SAMT-1(T) synthesizes all-trans-zeaxanthin (6.5 ± 0.5 mg g(-1) dry biomass) as a predominant xanthophyll carotenoid. As determined by 16S rRNA gene analysis, strain CC-SAMT-1(T) shared very high sequence similarity to the members of the genera Mariniflexile (96.1-95.3%) and Gaetbulibacter (96.0-95.9%); however, it formed a distinct phyletic lineage distantly associated with Mariniflexile species. Polar lipid profile constitutes phosphatidylethanolamine, four unidentified aminolipids, four unidentified lipids, and an unidentified glycolipid. Strain CC-SAMT-1(T) contains excessive unidentified aminolipid lipid (AL2-4) and glycolipid contents, and therefore clearly distinct from Mariniflexile species. Major fatty acids (> 5% of total fatty acids) were iso-C(15:0) (14.8%), iso-C(17:0) 3-OH (11.8%), iso-C(15:1) G (10.6%), anteiso-C(15:0) (9.7%), C(16:0) (8.1%), iso-C(16:0) 3-OH (7.9%), iso-C(15:0) 3-OH (7.5%), and summed feature 3 (containing C(16:1) ω6c and/or C(16:1) ω7c) (7.5%). Menaquinone-6 (MK-6) was major respiratory quinone. DNA G+C content was 33.7 mol%. Based on polyphasic taxonomy, strain CC-SAMT-1(T) represents a novel genus and species in the family Flavobacteriaceae for which the name Siansivirga zeaxanthinifaciens gen. nov., sp. nov. is proposed. The type strain is CC-SAMT-1(T) (= BCRC 80315(T) = JCM 17682(T)).  相似文献   

6.
A Gram-negative, aerobic, golden yellow, rod-shaped bacterium, a strain designated ICGEB-L15(T), was isolated from the larval midgut of Anopheles stephensi captured in District Jhajjar, Haryana, India. The strain ICGEB-L15(T) grows at 30-50°C (optimum 30-37°C), pH 6.5-8.5 (optimum 7.0-8.0) and in the presence of 2% NaCl. The major fatty acids were iso-C(15:0) (22.5% of total fatty acid), anteiso-C(15:0) (16.5%), iso-C(17:1) 9c (10.3%), iso-C(16:0) (7.3%), C(16:0) (6.1%), and iso-C(11:0) (5.3%). The strain showed the highest 16S rRNA gene sequence similarities with the type strains Pseudoxanthomonas daejeonensis KCTC 12207(T) (97.4%), Pseudoxanthomonas kaohsiungensis J36(T) (97.17%), and Pseudoxanthomonas mexicana AMX 26B(T) (97.11%). The DNA relatedness between ICGEB-L15(T) and Pseudoxanthomonas daejeonensis KCTC 12207(T), Pseudoxanthomonas kaohsiungensis J36(T) and Pseudoxanthomonas mexicana AMX 26B(T) was 24.5%, 28.2%, and 33.6%, respectively. The G+C content of genomic DNA was 69.9 mol%. The major isoprenoid quinone of strain ICGEB-L15(T) was Q-8. The strain ICGEB-L15(T) represents a novel species of the genus Pseudoxanthomonas based on physiological, biochemical and phylogenetic properties; therefore, the name Pseudoxanthomonas icgebensis sp. nov. is proposed. The type strain is ICGEB-L15(T) (=KACC 14090(T) =DSM 22536(T)).  相似文献   

7.
Teicoplanin, a glycopeptide antibiotic produced by Actinoplanes teichomyceticus, comprises five main components, denoted T-A2-1 to T-A2-5, differing in the structure of their acyl side chain, which is linear in T-A2-1 and T-A2-3 and branched in the other components. Production of T-A2-1, characterized by a linear C10:1 acyl moiety, is entirely dependent on the presence of linoleate in the fermentation medium. Addition to the medium of oleic acid esters at 2 g l-1 increases the yields of T-A2-3, characterized by a linear C10:0 acyl chain, about threefold. The antibiotic linear side chains thus appear to originate from C18 unsaturated acid by beta-oxidation degradation. The percentage of T-A2-2, T-A2-4 and T-A2-5, bearing the iso-C10:0, anteiso-C11:0 and iso-C11:0 acyl moieties, respectively, is strongly influenced by the presence in the medium of the amino acids known to be precursors of branched-chain fatty acids. Thus, valine increases the production of T-A2-2 whereas isoleucine or leucine increase the relative yields of T-A2-4 or T-A2-5, respectively. Analysis of the total cell lipids upon addition of the same amino acid shows corresponding increases in the proportion of the iso-C16:0, iso-C15:0 or anteiso-C17:0. A mutant A. teichomyceticus strain, which produces a novel teicoplanin with a linear C9:0 chain, differs from the wild strain in the presence of the linear C17:1 acid in its lipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A Gram-negative, aerobic, rod-shaped, nonspore-forming bacterial strain, designated Gsoil 357T, was isolated from soil sample of a ginseng field in Pocheon Province (South Korea). The isolate contained Q-8 as the predominant ubiquinone and iso-C16:0, iso-C17:1 9c, and iso-C15:0 as the major fatty acids. The G+C content of the genomic DNA was 69.3mol%. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Gsoil 357T was most closely related to Lysobacter gummosus (97.6%) and Lysobacter antibioticus (97.6%). However, the DNA-DNA relatedness value between strain Gsoil 357T and its phylogenetically closest neighbors was less than 17%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 357T should be classified as representing a novel species in the genus Lysobacter, for which the name Lysobacter ginsengisoli sp. nov. is proposed. The type strain is Gsoil 357T (=KCTC 12602T=DSM 18420T).  相似文献   

9.
A Gram-negative, nonmotile, aerobic and oxidase- and catalase-positive bacterium, designated D25(T), was isolated from the deep-sea sediments of the southern Okinawa Trough area. Phylogenetic analyses of 16S rRNA gene sequences showed that strain D25(T) fell within the genus Myroides, with 99.2%, 96.0% and 93.4% sequence similarities to the only three recognized species of Myroides. However, the DNA-DNA similarity value between strain D25(T) and its nearest neighbour Myroides odoratimimus JCM 7460(T) was only 49.9% (<70%). Several phenotypic properties could be used to distinguish strain D25(T) from other Myroides species. The main cellular fatty acids of strain D25(T) were iso-C(15:0), iso-C(17:1)omega9c, iso-C(17:0)3-OH and Summed Feature 3 (comprising C(16:1)omega7c and/or iso-C(15:0)2-OH). The major respiratory quinone was MK-6. The DNA G+C content was 33.0 mol%. The results of the polyphasic taxonomy analysis suggested that strain D25(T) represents a novel species of the genus Myroides, for which the name Myroides profundi sp. nov. is proposed. The type strain is D25(T) (=CCTCC M 208030(T)=DSM 19823(T)).  相似文献   

10.
11.
Genotypic and phenotypic analyses were performed on five Gram-negative, catalase and oxidase-positive, rod-shaped bacteria isolated from the gill and liver of four rainbow trout. Studies based on comparative 16S rRNA gene sequence analysis showed that the five new isolates shared 99.8-100% sequence similarity and that they belong to the genus Chryseobacterium. The nearest phylogenetic neighbours of the strain 701B-08(T) were Chryseobacterium ureilyticum F-Fue-04IIIaaaa(T) (99.1% 16S rRNA gene sequence similarity) and Chryseobacterium joosteii LMG 18212(T) (98.6%). DNA-DNA hybridization values between the five isolates were 91-99% and ranged from 2 to 53% between strain 701B-08(T) and the type strains of phylogenetically closely related species of Chryseobacterium. Strain 701B-08(T) had a DNA G+C content of 36.3 mol%, the major fatty acids were iso-C(15:0), iso-C(17:1)ω9c, C(16:1)ω6c and iso-C(17:0) 3-OH and the predominant respiratory quinone was MK-6. The novel isolates were distinguished from related Chryseobacterium species by physiological and biochemical tests. The genotypic and phenotypic properties of the isolates from rainbow trout suggest their classification as representatives of a novel species of the genus Chryseobacterium, for which the name Chryseobacterium oncorhynchi sp. nov. is proposed. The type strain is 701B-08(T) (=CECT 7794(T)=CCUG 60105(T)).  相似文献   

12.
Three Gram-positive bacterial strains, 7-3, 255-15 and 190-11, previously isolated from Siberian permafrost, were characterized and taxonomically classified. These microorganisms are rod-shaped, facultative aerobic, motile with peritrichous flagella and their growth ranges are from -2.5 to 40 degrees C. The chemotaxonomic markers indicated that the three strains belong to the genus Exiguobacterium. Their peptidoglycan type was A3alpha L-Lys-Gly. The predominant menaquinone detected in all three strains was MK7. The polar lipids present were phosphatidyl-glycerol, diphosphatidyl-glycerol and phosphatidyl-ethanolamine. The major fatty acids were iso-C13:0, anteiso-C13:0, iso-C15:0, C16:0 and iso-C17:0. Phylogenetic analysis based on 16S rRNA and six diverse genes, gyrB (gyrase subunit B), rpoB (DNA-directed RNA polymerase beta subunit), recA (homologous recombination), csp (cold shock protein), hsp70 (ClassI-heat shock protein-chaperonin) and citC (isocitrate dehydrogenase), indicated that the strains were closely related to Exiguobacterium undae (DSM 14481(T)) and Exiguobacterium antarcticum (DSM 14480(T)). On the basis of the phenotypic characteristics, phylogenetic data and DNA-DNA reassociation data, strain 190-11 was classified as E. undae, while the other two isolates, 7-3 and 255-15, comprise a novel species, for which the name Exiguobacterium sibiricum sp. nov. is proposed.  相似文献   

13.
The lipid composition of Clostridium butyricum is strongly influenced by the aliphatic chain compositions of the membrane lipids. Growth on cis-monounsaturated fatty acids in the absence of biotin was shown to affect the relative proportions of phosphatidylethanolamine, plasmenylethanolamine, and the glycerol acetal of plasmenylethanolamine most strongly, with smaller effects on the acidic lipids, phosphatidylglycerol and cardiolipin. The ratio of the glycerol acetal of plasmenylethanolamine to total phosphatidylethanolamine in cells grown on a series of fatty acids is shown to decrease in the following order; cis-vaccenic acid greater than or equal to oleic acid = C19-cyclopropane fatty acid greater than linoleic acid greater than petroselinic acid greater than elaidic acid greater than 14-methylhexadecanoic acid (anteiso-C17) greater than 12-methyltridecanoic acid (iso-C14). All fatty acids were extensively incorporated into the lipid acyl, alkenyl, and alkyl chains. There was considerable chain-elongation of the iso-C14 to iso-C16. The results are consistent with the hypothesis that the membrane lipid composition is strongly influenced by lipid shape and that the observed changes in lipid composition serve to stabilize the bilayer arrangement of the cell membrane.  相似文献   

14.
The types of fatty acids produced by two strains each of Bacillus larvae, B. lentimorbus, and B. popilliae, and their distribution patterns, were studied by gas-liquid chromatography. All six organisms produced eight major fatty acids: six branched (iso-C(14), -C(15), -C(16), and -C(17), and anteiso-C(15) and -C(17)), two normal (n-C(14) and -C(16)), and two minor (n-C(15) and monounsaturated n-C(16)). In addition, some other trace acids were produced. Branched-chain fatty acids accounted for 54 to 85% of the total fatty acids. These compositions are similar to those previously found with 26 strains of 12 species of the genus Bacillus. Thus, an abundance of branched-chain fatty acids seems to be a characteristic of the biochemical nature of the genus Bacillus. It is noteworthy that marked differences between the nutritional requirements of the three insect pathogens used in the present study and those of the other 12 species of the genus Bacillus studied previously are not significantly reflected in their fatty acid composition.  相似文献   

15.
The fatty acids of calcareous sponges (Calcarea, Porifera)   总被引:1,自引:0,他引:1  
Twenty-nine specimens of calcareous sponges (Class Calcarea, Phylum Porifera), covering thirteen representative species of the families Soleneiscidae, Leucaltidae, Levinellidae, Leucettidae, Clathrinidae, Sycettidae, Grantiidae, Jenkinidae, and Heteropiidae were analysed for their fatty acids. The fatty acids of Calcarea generally comprise saturated and monounsaturated linear (n-), and terminally methylated (iso-, anteiso-) C(14)-C(20) homologues. Furthermore, polyunsaturated C(22) fatty acids and the isoprenoic 4,8,12-trimethyltridecanoic acid were found. The most prominent compounds are n-C(16), iso-C(17), iso-C(18), n-C(18), n-C(20). In addition, a high abundance of the exotic 16-methyloctadecanoic acid (anteiso-C(19)) appears to be a characteristic trait of Calcarea. Long-chain 'demospongic acids', typically found in Demospongiae and Hexactinellida, are absent in Calcarea. The completely different strategy of calcarean fatty acid synthesis supports their phylogenetic distinctiveness from a common Demospongiae/Hexactinellida taxon. Both intraspecific and intraclass patterns of Calcarea showed great similarity, suggesting a conserved fatty acid composition that already existed in the last common ancestor of Calcinea and Calcaronea, i.e. before subclasses diverged.  相似文献   

16.
A Gram-positive, aerobic, non-motile, non-acid-alcohol-fast strain, designated YIM 61095(T), was isolated from the root of Maytenus austroyunnanensis collected from a tropical rainforest of Xishuangbanna in Yunnan Province, south-west China. Strain YIM 61095(T) exhibited chemotaxonomic and morphological characteristics that were consistent with members of the genus Saccharopolyspora. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 61095(T) was a member of the genus Saccharopolyspora and was most closely related to Saccharopolyspora flava AS 4.1520(T) (97.7% sequence similarity). The major fatty acids were iso-C(15:0), iso-C(16:0), iso-C(17:0) and anteiso-C(17:0). The predominant quinone detected was MK-9(H(4)). The DNA G+C content was 66.2 mol%. The phenotypic characteristics and DNA-DNA hybridization relatedness data indicated that strain YIM 61095(T) should be distinguished from Saccharopolyspora flava AS 4.1520(T). On the basis of the evidence presented in this study, strain YIM 61095(T) represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora endophytica sp. nov. is proposed. The type strain is YIM 61095(T) (=KCTC 19397(T)=CCTCC AA 208003(T)).  相似文献   

17.
Endophytic bacillus sp. isolated from the interior of balloon flower root   总被引:3,自引:0,他引:3  
A bacterial strain, designated CY22, was isolated from the interior of balloon flower (Platycodon grandiflorum) root in the Republic of Korea. The isolate coproduced an iturin-like antifungal compound and a surfactin-like potent biosurfactant. Analysis of the 16S-rDNA of strain CY22 showed that the isolate was a member of Bacillus. High similarities were observed between strain CY22 and Bacillus sp. TKSP 24, and between strain CY22 and B. subtilis 168. Phylogenetic analysis based on 16S-rDNA sequences showed that strain CY22 was closely related to Bacillus sp. The main whole-cell fatty acids were anteiso-C15:0 (37%), C17:0 (5.1%), and iso-C15:0 (27.7%). DNA G+C content was 54 mol%. Based on phylogenetic inference, phenotypic and chemotaxonomic characteristics, this endophytic strain Bacillus sp. CY22 was assigned to the genus Bacillus.  相似文献   

18.
A thermophilic, spore-forming bacterial strain L1(T) was isolated from hot compost "Pomigliano Environment" s.p.a., Pomigliano, Naples, Italy. The strain was identified by using a polyphasic taxonomic approach. L1(T) resulted in an aerobic, gram-positive, rod-shaped, thermophilic with an optimum growth temperature of 68 degrees C chemorganotrophic bacterium which grew on hydrocarbons as unique carbon and energy sources and was resistant to heavy metals. The G+C DNA content was 43.5 mol%. Phylogenetic analysis of 16S rRNA gene sequence and Random Amplified Polymorphic DNA-PCR (RAPD-PCR) analysis of L1(T) and related strains showed that it forms within Geobacillus toebii, a separate cluster in the Geobacillus genus. The composition of cellular fatty acids analyses by Gas-Mass Spectroscopy differed from that typical for the genus Geobacillus in that it is lacking in iso-C15 fatty acid, while iso-C16 and iso-C17 were predominant. Isolates grew on a rich complex medium at temperatures between 55-75 degrees C and presented a doubling time (t(d)) of 2 h and 6 h using complex media and hydrocarbon media, respectively. Among hydrocarbons tested, n-decane (2%) was the more effective to support the growth (1 g/L of wet cells). The microorganism showed resistance to heavy metal tested during the growth. Furthermore, intracellular alpha-galactosidase and alpha-glucosidase enzymatic activities were detectable in the L1(T) strain. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA-DNA hybridization, we propose assigning a novel subspecies of Geobacillus toebii, to be named Geobacillus toebii subsp. decanicus subsp. nov., with the type strain L1(T) (=DSM 17041=ATCC BAA 1004).  相似文献   

19.
An anaerobic, rod-shaped, mesophilic, chemolithoautotrophic, sulfate-reducing bacterial strain IOR2T was isolated from a newly found deep-sea hydrothermal vent (OVF, Onnuri Vent Field) area in the central Indian Ocean ridge (11°24′88″ S 66°25′42″ E, 2021 m water depth). The 16S rRNA gene sequence analysis revealed that the strain IOR2T was most closely related to Desulfovibrio senegalensis BLaC1T (96.7%). However, it showed low similarity with the members of the family Desulfovibrionaceae, such as Desulfovibrio tunisiensis RB22T (94.0%), D. brasiliensis LVform1T (93.9%), D. halophilus DSM 5663T (93.7%), and Pseudodesulfovibrio aespoeensis Aspo-2T (93.2%). The strain IOR2T could grow at 23–42°C (optimum 37°C), pH 5.0–8.0 (optimum pH 7.0) and with 0.5–6.5% (optimum 3.0%) NaCl. The strain could use lactate, pyruvate, H2, and glycerol as electron donors and sulfate, thiosulfate, and sulfite as electron acceptors. The major fatty acids of the strain IOR2T were iso-C15:0, iso-C17:0, ante-iso-C15:0, and summed feature 9 (C16:0 methyl/iso-C17:1ω9c). Both the strains IOR2T and BLaC1T could grow with CO2 and H2 as the sole sources of carbon and energy, respectively. Genomic evidence for the Wood-Ljungdahl pathway in both the strains reflects chemolithoautotrophic growth. The DNA G + C content of the strain IOR2T and BLaC1T was 58.1–60.5 mol%. Based on the results of the phylogenetic and physiologic studies, Paradesulfovibrio onnuriensis gen. nov., sp. nov. with the type strain IOR2T (= KCTC 15845T = MCCC 1K04559T) was proposed to be a member of the family Desulfovibrionaceae. We have also proposed the reclassification of D. senegalensis as Paradesulfovibrio senegalensis comb. nov.  相似文献   

20.
Two novel strains of the Cytophaga-Flexibacter-Bacteroides (CFB) group, designated Gsoil 219" and Gsoil 2381, were isolated from soil of a ginseng field of Pocheon Province in Korea. Both strains were Gram-negative, aerobic, nonmotile, nonspore-forming, and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that both isolates belong to the genus Chitinophaga but were clearly separated from established species of this genus. The sequence similarities between strain Gsoil 219T and type strains of the established species and between strain Gsoil 238T and type strains of the established species ranged from 91.4 to 94.7% and 91.6 to 94.2%, respectively. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; major fatty acids, iso-C15:0 and C(16:1) omega5c; major hydroxy fatty acid, iso-C(17:0) 3-OH; major polyamine, homospermidine) supported the affiliation of both strains Gsoil 219T and Gsoil 238T to the genus Chitinophaga. Furthermore, the results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of both strains from the other validated Chitinophaga species. Therefore, the two isolates represent two novel species, for which the name Chitinophaga soli sp. nov. (type strain, Gsoil 219T=KCTC 12650T=DSM 18093T) and Chitinophaga terrae sp. nov. (type strain, Gsoil 238T=KCTC 12651T=DSM 18078T) are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号