首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Experiments designed to evaluate the synergistic production of clastogenic effects by ionizing radiation and 60 Hz magnetic fields were performed using human lymphocytes from peripheral blood. Following exposure to ionizing radiation, cells were cultured in 60 Hz magnetic fields having field strengths up to 1.4 mT. Cells exposed to both ionizing radiation and 60 Hz magnetic fields demonstrated an enhanced frequency of near tetraploid chromosome complements, a feature not observed following exposure to only ionizing radiation. The results are discussed in the context of a multiple-stage model of cellular transformation, employing both initiating and promoting agents. © 1993 Wiley-Liss. Inc.  相似文献   

2.
It is established that extremely low frequency magnetic fields (ELFMF) at the flux densities, i.e., 5 mT and less, are not mutagenic. However, exposure to ELFMF enhances mutations induced by X-rays. In this study, we examined the effects of long-term exposure to 5 mT ELFMF on mutation induction and X-ray-induced mutations in human malignant glioma cells (MO54) with different mutant IkappaB-alpha (a critical inhibitor of NF-kappaB) genes. Cells were exposed or sham-exposed to 5 mT ELFMF for up to 8 days with or without initial X-rays (4 Gy), and the mutant frequency of hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene was analyzed. An obvious increase in X-ray-induced mutations was observed after treatment with ELFMF in combination with X-irradiation in MO54 cells with tyrosine mutant IkappaB-alpha gene other than with serine mutant IkappaB-alpha gene or vector alone. Exposure to ELFMF alone increased mutations significantly in MO54 cells with tyrosine mutant IkappaB-alpha gene. In addition, X-ray-induced apoptoic cells were increased in MO54-V cells after exposure to ELFMF, while an anti-apoptotic effect of magnetic field was found in MO54-SY4 cells. Our data suggest that exposure to 5 mT ELFMF may induce mutations and enhance X-ray-induced mutations, resulting from the inactivation of NF-kappaB through the inhibition of tyrosine phosphorylation.  相似文献   

3.
Ding GR  Wake K  Taki M  Miyakoshi J 《Life sciences》2001,68(9):1041-1046
Previously, we reported that exposure to extremely low frequency magnetic field (400 mT) increased in hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene mutations. However, it is unclear these mutations were induced by magnetic field (MF), electric field (EF), or both. To explore this question, a new exposure apparatus for EF was manufactured. We observed an increase in HPRT gene mutations in Chinese hamster ovary (CHO) cells after exposure to EF (10 V/m, 60 Hz) for 10 h. The mutant frequency by EF-exposure was an approximate 2-fold of that by sham-exposure. Our data suggest that the mutations induced by exposure of cells to the variable magnetic field at 400 mT may be, in part, due to the induced EF.  相似文献   

4.
The question whether extremely low frequency magnetic fields (ELFMFs) may contribute to mutagenesis or carcinogenesis is of current interest. In order to evaluate the possible genotoxic effects of ELFMFs, human blood cells from four donors were exposed in vitro for 48 h to 50 Hz, 1 mT uniform magnetic field generated by a Helmholtz coil system. Comet assay (SCGE), sister chromatid exchanges (SCE), chromosome aberrations (CAs), and micronucleus (MN) test were used to assess the DNA damage. ELF pretreated cells were also irradiated with 1 Gy of X-ray to investigate the possible combined effect of ELFMFs and ionizing radiation. Furthermore, nuclear division index (NDI) and proliferation index (PRI) were evaluated. Results do not evidence any DNA damage induced by ELFMF exposure or any effect on cell proliferation. Data obtained from the combined exposure to ELFMFs and ionizing radiation do not suggest any synergistic or antagonistic effect.  相似文献   

5.
6.
Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.  相似文献   

7.
The goal of the research reported here is to narrow the range of uncertainty about peripheral nerve stimulation (PNS) thresholds associated with whole body magnetic field exposures at 50/60 Hz. This involved combining PNS thresholds measured in human subjects exposed to pulsed magnetic gradient fields with calculations of electric fields induced in detailed anatomical models of the body by that same exposure system. PNS thresholds at power frequencies (50/60 Hz) can be predicted from these data due to the wide range of pulse durations (70 mus to 1 ms), the length of the pulse trains (several tens of ms), and the exposure of a large part of the body to the magnetic field. These data together with the calculations of the rheobase electric field exceeded in 1% (E(1%)) of two anatomical body models, lead to a median PNS detection threshold of 47.9 +/- 4.4 mT for a uniform 60 Hz magnetic field exposure coronal to the body. The threshold for the most sensitive 1% of the population is about 27.8 mT. These values are lower than PNS thresholds produced by magnetic fields with sagittal and vertical orientations or nonuniform exposures.  相似文献   

8.
Possible carcinogenic and/or mutagenic activity of extremely low frequency magnetic fields was examined using somatic mutation and recombination test system of Drosophila melanogaster. An X-linked semi-dominant DNA repair defective mutation mei-41(D5) was introduced into the conventional mwh/flr test system to enhance mutant spot frequency. Virgin females of w mei-41(D5)/FM6; flr/TM6 were crossed with w mei-41(D5)/Y; mwh jv; spa(pol) males. The F(1) third instar larvae were exposed to a 50Hz, 20mT sinusoidal AC magnetic field for 24h. After moulting from pupal cases, their wings were examined under a bright field microscope to detect hair spots with mwh or flr mutant morphology. The exposure caused a statistically significant enhancement in somatic recombination spot frequency. Mutant spots arising due to chromosomal non-disjunction or terminal deletion also increased but the frequency of spots resulting from point mutation was not altered. The enhancement in the recombination spot frequency was suppressed to the control level when a culture medium without electrolytes was used during exposure. When larvae were exposed to a magnetic field in an annular dish, flies from the outer ring showed more mutant spots compared to those from the inner ring. These results suggest that the detected mutagenic activity was that of the induced eddy current, rather than that of the magnetic field itself.  相似文献   

9.
The effect of 50 Hz magnetic fields on the cytosolic calcium oscillator in Jurkat E6.1 cells was investigated for field strengths within the range from 0 to 0.40 mT root mean square. The intracellular Ca2+ concentration data were collected for single Jurkat cells that exhibited a sustained spiking for at least 1 h while repeatedly exposing them to an alternating magnetic field in 10-min intervals interposed with nonexposure intervals of the same length. The obtained data were analysed by computing spectral densities of the Ca2+ oscillating patterns for each of these 10-min intervals. For every single-cell experiment the spectra of all exposure as well as nonexposure periods were then averaged separately. A comparison between the resulting averages showed that the total spectral power of the cytosolic Ca2+ oscillator was reduced by exposure of the cells to an alternating magnetic field and that the effect increased in an explicit dose-response manner. The same relationship was observed within the 0-10 mHz (10 x 10(-3) Hz) subinterval of the Ca2+ oscillation spectrum. For subintervals at higher frequencies, the change caused by the exposure to the magnetic field was not significant.  相似文献   

10.
This study demonstrates that exposure to 60 Hz magnetic fields (3.4–8.8 mT) and magnetic fields over the range DC-600 kHz (2.5–6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. The relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization. © 1995 Wiley-Liss, Inc.  相似文献   

11.
In the past, epidemiological studies indicated a possible correlation between the exposure to ELF fields and cancer. Public concern over possible hazards associated with exposure to extremely low frequency magnetic fields (ELFMFs) stimulated an increased scientific research effort. More recent research and laboratory studies, however, have not been able to definitively confirm the correlation suggested by epidemiological studies. The aim of this study was to evaluate the effects of 50 Hz magnetic fields in human blood cells exposed in vitro, using several methodological approaches for the detection of genotoxicity. Whole blood samples obtained from five donors were exposed for 2 h to 50 Hz, 1 mT uniform magnetic field generated by a Helmholtz coil system. Comet assay, sister chromatid exchanges (SCE), chromosome aberrations (CA), and micronucleus (MN) tests were used to assess DNA damage, one hallmark of malignant cell transformation. The effects of a combined exposure with X-rays were also evaluated. Results obtained do not show any significant difference between ELFMFs exposed and unexposed samples. Moreover, no synergistic effect with ionizing radiation has been observed. A slight but significant decrease of cell proliferation was evident in ELFMFs treated samples and samples subjected to the combined exposure.  相似文献   

12.
We have investigated the effects of a sinusoidal 60 Hz magnetic field on free radical (superoxide anion) production, degranulation (beta-glucuronidase and lysozyme release) and viability in human neutrophils (PMNs). Experiments were performed blindly in very controlled conditions to examine the effects of a magnetic field in resting PMNs and in PMNs stimulated with a tumor promoter: phorbol 12-myristate 13-acetate (PMA). Exposure of unstimulated human PMNs to a 60 Hz magnetic field did not affect the functions examined. In contrast, exposure of PMNs to a 22 milliTesla (mT), 60 Hz magnetic field induced significant increases in superoxide anion (O2-) production (26.5%) and in beta-glucuronidase release (53%) when the cells were incubated with a suboptimal stimulating dose of PMA. Release of lysozyme and lactate dehydrogenase was unchanged by the magnetic field, whether the cells were stimulated or not. A 60 Hz magnetic field did not have any effect on O2- generation by a cell-free system xanthine/xanthine oxidase, suggesting that a magnetic field could upregulate common cellular events (signal transduction) leading to O2- generation and beta-glucuronidase release. In conclusion, exposure of PMNs to a 22 mT, 60 Hz magnetic field potentiates the effect of PMA on O2- generation and beta-glucuronidase release. This effect could be the result of an alteration in the intracellular signaling.  相似文献   

13.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no overall effects of magnetic fields on splenomegaly or survival in exposed animals. In addition, no significant and/or consistent differences were detected in hematological parameters between the magnetic field exposed and the ambient control groups.  相似文献   

15.
The use of induction heater (IH) cook tops in homes has become widespread, especially in Japan, but there are concerns about the safety of intermediate frequency (IF) electromagnetic fields associated with these cooking appliances. Since the cellular genotoxicity of IF magnetic fields has not been examined in cultured cells, we examined the effects of these fields at a magnetic flux density of 532 +/- 20 microT at 23 kHz, using an exposure unit with a built-in CO2 incubator. Exposure to the IF magnetic field at 532 microT for 2 h did not affect the growth of CHO-K1 cells and caused no mutagenic effects in bacterial mutation assays. Exposure to the IF magnetic field for 2 h induced neither single nor double DNA strand breaks in comet assays, and caused no significant change in the mutation frequency at the HPRT locus compared to sham exposure. The magnetic field used in this study is more than 80 times higher than the level recommended as safe in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines. From these results, we suggest that exposure to an IF magnetic field for 2 h does not cause cellular genotoxicity in bacteria and in Chinese hamster cells. However, the possibility of effects on other cellular functions remains, and further studies on the cellular effects of IF magnetic fields are required.  相似文献   

16.
The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.  相似文献   

17.
60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells   总被引:8,自引:0,他引:8  
In previous research, we found an increase in DNA strand breaks in brain cells of rats acutely exposed to a 60 Hz magnetic field (for 2 h at an intensity of 0.5 mT). DNA strand breaks were measured with a microgel electrophoresis assay using the length of DNA migration as an index. In the present experiment, we found that most of the magnetic field-induced increase in DNA migration was observed only after proteinase-K treatment, suggesting that the field caused DNA-protein crosslinks. In addition, when brain cells from control rats were exposed to X-rays, an increase in DNA migration was observed, the extent of which was independent of proteinase-K treatment. However, the X-ray-induced increase in DNA migration was retarded in cells from animals exposed to magnetic fields even after proteinase-K treatment, suggesting that DNA-DNA crosslinks were also induced by the magnetic field. The effects of magnetic fields were also compared with those of a known DNA crosslink-inducing agent mitomycin C. The pattern of effects is similar between the two agents. These data suggest that both DNA-protein and DNA-DNA crosslinks are formed in brain cells of rats after acute exposure to a 60 Hz magnetic field.  相似文献   

18.
We have used the quasi-static impedance method to calculate the currents induced in the nominal 2 x 2 x 3 and 6 mm resolution anatomically based models of the human body for exposure to magnetic fields at 60 Hz. Uniform magnetic fields of various orientations and magnitudes 1 or 0.417 mT suggested in the ACGIH and ICNIRP safety guidelines are used to calculate induced electric fields or current densities for the various glands and organs of the body including the pineal gland. The maximum 1 cm(2) area-averaged induced current densities for the central nervous system tissues, such as the brain and the spinal cord, were within the reference level of 10 mA/m(2) as suggested in the ICNIRP guidelines for magnetic fields (0.417 mT at 60 Hz). Tissue conductivities were found to play an important role and higher assumed tissue conductivities gave higher induced current densities. We have also determined the induced current density distributions for nonuniform magnetic fields associated with two commonly used electrical appliances, namely a hair dryer and a hair clipper. Because of considerably higher magnetic fields for the latter device, higher induced electric fields and current densities were calculated.  相似文献   

19.
20.
DNA damage was induced in isolated human peripheral lymphocytes by exposure at 5 Gy to 60Co radiation. Cells were permitted to repair the DNA damage while exposed to 60-Hz fields or while sham-exposed. Exposed cells were subjected to magnetic (B) or electric (E) fields, alone or in combination, throughout their allotted repair time. Repair was stopped at specific times, and the cells were immediately lysed and then analyzed for the presence of DNA single-strand breaks (SSB) by the alkaline-elution technique. Fifty to 75 percent of the induced SSB were repaired 20 min after exposure, and most of the remaining damage was repaired after 180 min. Cells were exposed to a 60-Hz ac B field of 1 mT; an E field of 1 or 20 V/m; or combined E and B fields of 0.2 V/m and 0.05 mT, 6 V/m and 0.6 mT, or 20 V/m and 1 mT. None of the exposures was observed to affect significantly the repair of DNA SSB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号